电磁场数值分析与计算课程笔记
无PPT,按照板书整理,若有错误敬请指正。
目录
1.电磁场数值分析与计算01-场论
2.电磁场数值分析与计算02-Maxwell方程组
3.电磁场数值分析与计算03-电磁场数值分析的定解问题
4.电磁场数值分析与计算04-边界条件
5.电磁场数值分析与计算05-有限元方法介绍
6.电磁场数值分析与计算06-2D有限元分析
初始条件(Initial Condition)
说明整个系统的初始状态
初始条件给出物理量\(u\)于初始瞬间在系统中各处的值\({\left. u \right|_{t = 0}} =
{f_1}(x,y,z)\)
\(u\)对时间的变化率于初始瞬间在系统各处的值\(\left. \frac{\partial u}{\partial t} \right|_{t =
0} = {f_2}(x,y,z)\)
边界条件(Boundry Condition)
- 第一类边界条件(狄里赫利问题):规定物理量\(u\)在边界上的值\(\left. u \right|_s = f_1(s)\)。\(\left. u \right|_s = 0\)时是齐次边界条件。
- 第二类边界条件(聂依曼问题):规定物理量\(u\)的法向微商在边界\(s\)上的值\(\left. \frac{\partial u}{\partial n} \right|_s = f_2(s)\)。
- 第三类边界条件(洛平问题):规定物理量\(u\)及其法向微商\(\frac{\partial u}{\partial n}\)在边界上的某一线性关系\(\left.(\eta u+\beta\frac{\partial u}{\partial n})\right|_s =f_3(s)\),其中\(\eta\)、\(\beta\)为常数。
用这三类边界条件求解拉普拉斯方程\({\bf{\nabla}}^2 \Phi=0\)的问题,分别被称作狄里赫利问题、聂依曼问题、洛平问题。
不同媒质交界面条件
分界面两侧,场量突变⇒推导两侧场量的法向分量或切向分量的关系式。
两种媒质分界面上的电场(\(\bf{E}\)、\(\bf{D}\))
(1)分量面的两侧电场强度的切向分量连续,即\(E_{1t}=E_{2t}\)证明:沿着分界面取一闭合路径,长度为\(l\),宽为\(\Delta h\)。
\(\oint_l { {\bf{E}}d{\bf{l}}} = -\int_s {\frac{\partial {\bf{B}}}{\partial t}d{\bf{l}}}\)
当\(\Delta h \to 0\)时表示为分界面,则闭合路径面积趋近于0,上式右侧趋近于0,即\(\oint_l { {\bf{E}}d{\bf{l}}} =0\)
则\(E_{1t} \cdot l - E_{2t} \cdot l=0\),即\(E_{1t}=E_{2t}\)。

即\(\rho=0\)时,\(D_{1n}=D_{2n}\);\(\rho \ne 0\)时,\(D_{2n}-D_{1n}=\rho_s\)(分界面上自由电荷面密度)。
证明:沿着分界面做一封闭的圆柱体,高度为\(\Delta h\),上下底面为\(\Delta S\)。
则有\(\oint_S { {\bf{D}}d{\bf{S}}} = q\)
当\(\Delta h \to 0\)时,侧面积趋近于0
\(-D_{1n} \cdot \Delta S + D_{2n} \cdot \Delta S = \rho_s \cdot \Delta S\)⇒\(D_{2n}-D_{1n}=\rho_s\)
如果媒质1为导体,\(D_{1n}=0\),\(D_{2n}=\rho_s\),且\(E_{1t}=E_{2t}=0\)
则导体为等电位体\({\bf{\nabla}}\Phi=0\),\(E=-{\bf{\nabla}}\Phi=0\),\(D=\varepsilon{\bf{E}}=0\)

当分界面上无自由电荷时,静电场折射定律:\(\frac{tan \alpha_1}{tan \alpha_2}=\frac{\varepsilon_1}{\varepsilon_2}\)
证明:由\(tan \alpha_1=\frac{E_{1t}}{E_{1n}}\)、\(tan \alpha_2=\frac{E_{2t}}{E_{2n}}\)、\(E_{1t}=E_{2t}\)、\(D_{1n}=D_{2n}\)与\({\bf{D}}=\varepsilon{\bf{E}}\)
得到\(\frac{tan \alpha_1}{tan \alpha_2}=\frac{E_{1t}}{E_{1n}} \frac{E_{2n}}{E_{2t}}=\frac{E_{2n}}{E_{1n}}=\frac{D_{2n}/\varepsilon_2}{D_{1n}/\varepsilon_1}=\frac{\varepsilon_1}{\varepsilon_2}\)

两种导电媒质分界面上的稳定电流场
(1)两侧电流密度的法向分量连续\(J_{1n}=J_{2n}\)
(2)两侧电场强度的切向分量连续\(E_{1t}=E_{2t}\)
(3)电流密度线的折射定律\(\frac{tan
\alpha_1}{tan \alpha_2}=\frac{\sigma_1}{\sigma_2}\)
两种媒质分界面上的磁场(稳定)
(1)两侧磁通密度的法向分量连续\(B_{1n}=B_{2n}\)证明:沿着分界面做一封闭的圆柱体,高度为\(\Delta h\),上下底面为\(\Delta S\)。
由高斯定理\(\oint_S { {\bf{B}}d{\bf{S}}} = \int_V { ({\bf{\nabla}}\cdot{\bf{B}})d{\bf{V}}} = 0\)
当\(\Delta h \to 0\)时,侧面积趋近于0
则有\(\oint_S { {\bf{B}}d{\bf{S}}} = {B_{2n}}{\bf{n_2}}\cdot{\Delta S} + {B_{1n}}{\bf{n_1}}\cdot{\Delta S}=0\)
⇒\(({B_{2n}}-{B_{1n}}){\Delta S}=0\)
得到\(B_{1n}=B_{2n}\)

当分界面上有电流时\(H_{1t}-H_{2t}=J_s\)
当媒质2为未饱和的铁磁质(\(\mu_r \to \infty\))
当\(\bf{B}\)为有限值时,\(H_{2t}=0\),\(H_{1t}=J_s\)

总结:切向分量连续(\({\bf{E}}\)、\({\bf{H}}\));法向分量连续(\({\bf{D}}\)、\({\bf{J}}\)、\({\bf{B}}\))。
用电磁位表示的边界条件
用电位\(\Phi\)表示的边界条件
\({\bf{E}}=-{\bf{\nabla}}\Phi\)⇒\(E_x{\bf{i}}+E_y{\bf{j}}+E_z{\bf{k}}=-\frac{\partial
\Phi}{\partial x}{\bf{i}}-\frac{\partial \Phi}{\partial
y}{\bf{j}}-\frac{\partial \Phi}{\partial z}{\bf{k}}\)
\(E_n{\bf{n}}+E_{\tau}{\bf{\tau}}+E_t{\bf{t}}=-\frac{\partial
\Phi}{\partial n}{\bf{n}}-\frac{\partial \Phi}{\partial
\tau}{\bf{\tau}}-\frac{\partial \Phi}{\partial t}{\bf{t}}\)
由两侧电场强度的切向分量连续\(E_{1t}=E_{2t}\),可知\(-\frac{\partial \Phi_1}{\partial
t}=-\frac{\partial \Phi_2}{\partial t}\)
得到\(\Phi_1=\Phi_2\),即在介质分界面上电位连续
\({\bf{D_{2n}}}-{\bf{D_{1n}}}=\rho_s\)
\({\bf{D_{1n}}}=\varepsilon_1{\bf{E_{1n}}}=-\varepsilon_1\frac{\partial
\Phi_1}{\partial n}\)
\({\bf{D_{2n}}}=\varepsilon_2{\bf{E_{2n}}}=-\varepsilon_2\frac{\partial
\Phi_2}{\partial n}\)
⇒\(\varepsilon_1\frac{\partial
\Phi_1}{\partial n}-\varepsilon_2\frac{\partial \Phi_2}{\partial
n}=\rho_s\)
在介质的分界面上电位导数不连续
用磁位\(\bf{A}\)表示的边界条件
由两侧磁通密度的法向分量连续\(B_{1n}=B_{2n}\)
且\({\bf{A}}=A_z{\bf{k}}\),\({\bf{J}}=J_z{\bf{k}}\)
⇒\({\bf{B} } = {\bf{\nabla} } \times {\bf{A} }
= \left| {\begin{array}{*{20}{c}}{\bf{t}}&{\bf{n}}&{\bf{k}} \\
{\frac{\partial }{ {\partial t}}}&{\frac{\partial }{ {\partial
n}}}&{\frac{\partial}{ {\partial k}}} \\ {0}&{0}&{A_z}
\end{array}} \right| = \frac{\partial A_z}{\partial n}{\bf{t}} -
\frac{\partial A_z}{\partial t}{\bf{n}} = B_t{\bf{t}} +
B_n{\bf{n}}\)
即\(B_n=-\frac{\partial A_z}{\partial
t}\),\(B_t=\frac{\partial
A_z}{\partial n}\)
可知\(B_{1n}=-\frac{\partial A_{1z}}{\partial
t}\),\(B_{2n}=-\frac{\partial
A_{2z}}{\partial t}\)
⇒\(\frac{\partial A_{1z}}{\partial
t}=\frac{\partial A_{2z}}{\partial t}\)⇒\(A_{1t}=A_{2t}\)