电磁场数值分析与计算06-2D有限元分析

文章目录
  1. 1. 目录
  2. 2. 插值函数
    1. 2.1. 1D空间的插值
      1. 2.1.1. 一维一阶插值
      2. 2.1.2. 一维二阶插值
      3. 2.1.3. 一维N阶插值
    2. 2.2. 2D空间的插值
      1. 2.2.1. 二维一阶插值
      2. 2.2.2. 二维二阶插值
      3. 2.2.3. 二维N阶插值
  3. 3. 二维边值问题
    1. 3.1. 区域离散
    2. 3.2. 单元的插值
    3. 3.3. 构建方程系统(基于伽辽金法)
    4. 3.4. 狄利赫莱边界条件的处理
  4. 4. 2D有限元分析的应用
    1. 4.1. 静电场问题
    2. 4.2. 2D磁场
  5. 5. 参考资料

电磁场数值分析与计算课程笔记
无PPT,按照板书整理,若有错误敬请指正。

目录

1.电磁场数值分析与计算01-场论
2.电磁场数值分析与计算02-Maxwell方程组
3.电磁场数值分析与计算03-电磁场数值分析的定解问题
4.电磁场数值分析与计算04-边界条件
5.电磁场数值分析与计算05-有限元方法介绍
6.电磁场数值分析与计算06-2D有限元分析

插值函数

插值函数又称形状函数、权重函数(Interpolation/Shape/Weighting Function),指的是在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。

1D空间的插值

一维一阶插值

给定两个点及其对应的物理量\((x_1,\Phi_1)\quad(x_2,\Phi_2)\quad(x_1<x_2)\),求\(\Phi(x_1<x<x_2)\)
构造线性插值函数\(\tilde \Phi(x)=ax+b\)
\(x=x_1 \quad \tilde \Phi(x_1)=\Phi_1 \quad \Rightarrow \quad ax_1+b=\Phi_1\)
\(x=x_2 \quad \tilde \Phi(x_2)=\Phi_2 \quad \Rightarrow \quad ax_2+b=\Phi_2\)
使用克莱姆法则求解方程组:
\(\left[ {\begin{array}{*{20}{c}} x_1&1 \\ x_2&1 \end{array}}\right] \left[ {\begin{array}{*{20}{c}} a \\ b \end{array}}\right] = \left[ {\begin{array}{*{20}{c}} \Phi_1 \\ \Phi_2 \end{array}}\right]\)
\(a=\frac{\left[ {\begin{array}{*{20}{c}} \Phi_1&1 \\ \Phi_2&1 \end{array}}\right]}{\left[ {\begin{array}{*{20}{c}} x_1&1 \\ x_2&1 \end{array}}\right]}=\frac{\Phi_1-\Phi_2}{x_1-x_2} \quad b=\frac{\left[ {\begin{array}{*{20}{c}} x_1&\Phi_1 \\ x_2&\Phi_2 \end{array}}\right]}{\left[ {\begin{array}{*{20}{c}} x_1&1 \\ x_2&1 \end{array}}\right]}=\frac{\Phi_2 x_1 - \Phi_1 x_2}{x_1-x_2}\)
\(\Rightarrow \tilde \Phi(x) = \frac{\Phi_1-\Phi_2}{x_1-x_2}x+\frac{\Phi_2 x_1 - \Phi_1 x_2}{x_1-x_2}=N_1(x)\Phi_1+N_2(x)\Phi_2=\frac{x-x_2}{x_1-x_2}\Phi_1+\frac{x-x_1}{x_2-x_1}\Phi_2\)
其中,线性插值函数\(N_1(x)=\frac{x-x_2}{x_1-x_2} \quad N_2(x)=\frac{x-x_1}{x_2-x_1}\)
\(N_1(x) \left\{ {\begin{array}{*{20}{c}} N_1(x_1)=1 \\ N_1(x_2)=0 \end{array}}\right. \quad N_2(x) \left\{ {\begin{array}{*{20}{c}} N_2(x_1)=0 \\ N_2(x_2)=1 \end{array}}\right.\)
图1 一维一阶线性插值函数

一维二阶插值

给定两个点及其对应的物理量\((x_1,\Phi_1)\quad(x_2,\Phi_2)\quad(x_3,\Phi_3)\)
构造线性插值函数\(\tilde \Phi(x)=ax^2+bx+c=N_1(x)\Phi_1+N_2(x)\Phi_2+N_3(x)\Phi_3\)
\(x=x_1 \quad \tilde \Phi(x_1)=\Phi_1 \quad \Rightarrow \quad ax_1^2+bx_1+c=\Phi_1\)
\(x=x_2 \quad \tilde \Phi(x_2)=\Phi_2 \quad \Rightarrow \quad ax_2^2+bx_2+c=\Phi_1\)
\(x=x_3 \quad \tilde \Phi(x_3)=\Phi_3 \quad \Rightarrow \quad ax_3^2+bx_3+c=\Phi_1\)
使用克莱姆法则求解方程组:
\(\left[ {\begin{array}{*{20}{c}} x_1^2&x_1&1 \\ x_2^2&x_2&1 \\ x_3^2&x_3&1 \end{array}}\right] \left[ {\begin{array}{*{20}{c}} a \\ b \\c \end{array}}\right] = \left[ {\begin{array}{*{20}{c}} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{array}}\right]\)
(求解过程及其结果略)
线性插值函数:
\(N_1(x_1)=1 \quad N_2(x_1)=0 \quad N_3(x_1)=0\)
\(N_1(x_2)=0 \quad N_2(x_2)=1 \quad N_3(x_2)=0\)
\(N_1(x_3)=0 \quad N_2(x_3)=0 \quad N_3(x_3)=1\)
\(N_1(x)=\frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} \quad N_2(x)=\frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} \quad N_3(x)=\frac{(x-x_1)(x-x_2)}{(x_3-x_2)(x_1-x_2)} \quad\)

一维N阶插值

给定\(n+1\)个点及其对应的物理量\((x_1,\Phi_1)\quad(x_2,\Phi_2)\cdots(x_{n+1},\Phi_{n+1})\)
线性插值函数:
\(N_1(x)=\frac{(x-x_2)(x-x_3)\cdots(x-x_n)(x-x_{n+1})}{(x_1-x_2)(x_1-x_3)\cdots(x_1-x_n)(x_1-x_{n+1})}\)
\(N_i(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)(x-x_{n+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)(x_i-x_{n+1})}\)
性质:
\(N_k(x_i)=\left\{ {\begin{array}{*{20}{c}} 1&i=k \\ 0&i \ne k \end{array}}\right. \quad \sum\limits_{i = 1}^n N_k(x_i)=1\)
分母是\((x-x_k)\)的连乘(\(k \ne i\));分子是\((x_i-x_k)\)的连乘(\(k \ne i\)

2D空间的插值

二维一阶插值

图2 二维一阶插值

使用三角形进行剖分,每个三角形为一个单元(element),其中包含三个顶点(node),分别为\((x_1,y_1,\Phi_1)\quad(x_2,y_2,\Phi_2)\quad(x_3,y_3,\Phi_3)\)
\(ax_1+by_1+c=\Phi_1\)
\(ax_2+by_2+c=\Phi_2\)
\(ax_3+by_3+c=\Phi_3\)
使用克莱姆法则求解方程组,求解过程及其结果略。
其中算式分母项\(D=\left[ {\begin{array}{*{20}{c}} x_1&y_1&c \\ x_2&y_2&c \\ x_3&y_3&c \end{array}}\right]=2\Delta\),其大小为所剖分的三角形面积的2倍。
线性插值函数展开为形状函数:\(\tilde \Phi(x)=\sum\limits_1^3 N_k(x,y)\Phi_k\)
\(N_1(x,y)=\frac{1}{2\Delta}(p_1 x+q_1 y+r_1)\)
\(N_2(x,y)=\frac{1}{2\Delta}(p_2 x+q_2 y+r_2)\)
\(N_3(x,y)=\frac{1}{2\Delta}(p_3 x+q_3 y+r_3)\)
\(\left\{ {\begin{array}{*{20}{c}} N_1(x_1,y_1)=1 \\ N_1(x_2,y_2)=0 \\ N_1(x_3,y_3)=0 \end{array}}\right. \quad \left\{ {\begin{array}{*{20}{c}} N_2(x_1,y_1)=0 \\ N_2(x_2,y_2)=1 \\ N_2(x_3,y_3)=0 \end{array}}\right. \quad \left\{ {\begin{array}{*{20}{c}} N_3(x_1,y_1)=0 \\ N_3(x_2,y_2)=0 \\ N_3(x_3,y_3)=1 \end{array}}\right.\)
\(p_1=y_2-y_3 \quad p_2=y_3-y_1 \quad p_3=y_1-y_2\)
\(q_1=x_3-x_2 \quad q_2=x_1-x_3 \quad q_3=x_2-x_1\)
\(r_1=x_2 y_3-x_3 y_2 \quad r_2=x_3 y_1-x_1 y_3 \quad r_3=x_1 y_2-x_2 y_1\)
三角形的三点按照逆时针标记序号
p的下标为逆时针;q的下标为顺时针;r的下标为逆时针-顺时针

二维二阶插值

图3 二维二阶插值

在二维一阶插值的基础上,再取三个边的中点\((x_4,y_4,\Phi_4)\quad(x_5,y_5,\Phi_5)\quad(x_6,y_6,\Phi_6)\)
同样列出方程组并使用克莱姆法则求解之,求解过程及其结果略
形状函数:\(\tilde \Phi(x)=a_1+a_2 x+a_3 y+a_4 x^2+a_5 xy+a_6 y^2=\sum\limits_{j=1}^6 N_j(x,y)\Phi_j\)
性质:\(N_j(x_k,y_k)=\left\{ {\begin{array}{*{20}{c}} 1&j=k \\ 0&j \ne k \end{array}}\right. \quad \sum\limits_{j = 1}^n N_j(x_k,y_k)=1\)
\(L_1(x,y)=\frac{1}{2\Delta}(p_1 x+q_1 y+r_1 ) \quad p_1=y_2-y_3 \quad q_1=x_3-x_2 \quad r_1=x_2 y_3-x_3 y_2\)
\(L_2(x,y)=\frac{1}{2\Delta}(p_2 x+q_2 y+r_2 ) \quad p_2=y_3-y_1 \quad q_2=x_1-x_3 \quad r_2=x_3 y_1-x_1 y_3\)
\(L_3(x,y)=\frac{1}{2\Delta}(p_3 x+q_3 y+r_3 ) \quad p_3=y_1-y_2 \quad q_3=x_2-x_1 \quad r_3=x_1 y_2-x_2 y_1\)
\(N_1(x,y)=(2L_1-1)L_1 \quad N_4(x,y)=4L_1 L_2\)
\(N_2(x,y)=(2L_2-1)L_2 \quad N_5(x,y)=4L_2 L_3\)
\(N_3(x,y)=(2L_3-1)L_3 \quad N_6(x,y)=4L_3 L_1\)
\(L(x,y)\)与二维一阶插值的\(N(x,y)\)一致

二维N阶插值

图4 帕斯卡三角形

二维N阶插值的形状函数展开式可以使用帕斯卡三角形(杨辉三角)推算出。
例如二维三阶插值的形状函数为:
\(\tilde \Phi(x)=a_1+a_2 x+a_3 y+a_4 x^2+a_5 xy+a_6 y^2+a_7 x^3+a_8 x^2 y+a_9 xy^2+a_{10} y^3=\sum\limits_{j=1}^{10} N_j(x,y)\Phi_j\)

二维边值问题

由二阶偏微分方程定义的边值问题
\(-\frac{\partial}{\partial x}(\alpha_x \frac{\partial \Phi}{\partial x})-\frac{\partial}{\partial y}(\alpha_y \frac{\partial \Phi}{\partial y})+\beta\Phi=f \quad (x,y \in \Omega)\)
\(\Phi\)为未知函数,\(\alpha_x,\alpha_y,\beta\)为与求解域中材料特性有关的系数,\(f\)为激励(已知)。

特例——二维拉普拉斯方程
\({\bf{\nabla}}^2 \Phi=0\),即\(\frac{\partial^2 \Phi}{\partial x^2}+\frac{\partial^2 \Phi}{\partial y^2}=0 \quad (\alpha_x=1,\alpha_y=1,\beta=0,f=0)\)
边界条件:
图5 二维边值问题

\(\Gamma_1\)上,\(\Phi=P\)(常量)
\(\Gamma_2\)上,\((\alpha_x \frac{\partial \Phi}{\partial x} {\bf{i}}+\alpha_y \frac{\partial \Phi}{\partial y} {\bf{j}})\cdot {\bf{n}}+\gamma\Phi=Q\)
\(\Gamma_d\)上,\(\left\{ {\begin{array}{*{20}{c}} \Phi^+=\Phi^- \\ (\alpha_x^+ \frac{\partial \Phi^+}{\partial x} {\bf{i}}+\alpha_y^+ \frac{\partial \Phi^+}{\partial y} {\bf{j}})\cdot {\bf{n}}=(\alpha_x^- \frac{\partial \Phi^-}{\partial x} {\bf{i}}+\alpha_y^- \frac{\partial \Phi^-}{\partial y} {\bf{j}})\cdot {\bf{n}} \end{array}}\right.\)
(场矢量的法向连续)

区域离散

剖分原则:
①单元之间不能有重叠
②单元之间通过定点连接
③避免出现狭长单元
④单元的数量对存储计算及存储精度均有影响

编号: 这里举的例子将一块区域划分成了四个单元\((1),(2),(3),(4)\),并对六个节点与六条边界进行编号。
图6 区域离散与编号

连接矩阵:

表1 连接矩阵
e n(1,e) n(2,e) n(3,e)
(1) 2 4 1
(2) 5 4 2
(3) 3 5 2
(4) 5 6 4

其中\(e\)表示单元,\(n(i,e)\)中的\(i\)表示节点,单元内的节点按照逆时针排序,排序不唯一,如节点\((1)\)可排序为241、124、412。

部分提供的数据:
(1)各节点坐标:\((x_1,y_1),\cdots,(x_i,y_i)\)
(2)材料属性:\({\begin{array}{*{20}{c}} e_1 \Rightarrow \alpha_{x_1} \quad \alpha_{y_1} \quad \beta_1 \quad f_1 \\ e_2 \Rightarrow \alpha_{x_2} \quad \alpha_{y_2} \quad \beta_2 \quad f_2 \\ e_3 \Rightarrow \alpha_{x_3} \quad \alpha_{y_3} \quad \beta_3 \quad f_3 \\ e_4 \Rightarrow \alpha_{x_4} \quad \alpha_{y_4} \quad \beta_4 \quad f_4 \end{array}}\)
(3)\(\Gamma_1\)上各节点的\(\Phi\)
(4)\(\Gamma_2\)上每一段上的\(\gamma\)\(q\)

单元的插值

图7 单元的插值

\(N_k^e(x,y)=\frac{1}{2\Delta^e}(p_k^e+q_k^e+r_k^e) \quad k=1,2,3\)

构建方程系统(基于伽辽金法)

(边值问题、求解区域边界条件、区域的离散及连接矩阵见上文)
余量\(r=-\frac{\partial}{\partial x}(\alpha_x \frac{\partial \Phi}{\partial x})-\frac{\partial}{\partial y}(\alpha_y \frac{\partial \Phi}{\partial y})+\beta\Phi-f\)
对于第\(e\)个单元的加权余量
\(R_i^e=\iint\limits_{\Omega ^e} N_i^e rdxdy \quad i=1,2,3\cdots\)
\(R_i^e=\iint\limits_{\Omega ^e} N_i^e [-\frac{\partial}{\partial x}(\alpha_x \frac{\partial \Phi^e}{\partial x})-\frac{\partial}{\partial y}(\alpha_y \frac{\partial \Phi^e}{\partial y})+\beta\Phi^e-f] dxdy\)
\(=\iint\limits_{\Omega ^e}[\alpha_x\frac{\partial N_i^e}{\partial x}\frac{\partial \Phi^e}{\partial x}+\alpha_y\frac{\partial N_i^e}{\partial y}\frac{\partial \Phi^e}{\partial y}+\beta N_i^e\Phi^e]dxdy-\iint\limits_{\Omega ^e}N_i^e fdxdy-\oint\limits_{\Gamma^e}N_i^e{\bf{D}}\cdot{\bf{n^e}}d\Gamma\)
(推导过程略,因为不考)
\(\Gamma^e\)\(\Omega^e\)的边界,\(\bf{n^e}\)\(\Gamma^e\)的单位法向量,\({\bf{D}}=(\alpha_x\frac{\partial\Phi}{\partial x}{\bf{i}}+\alpha_y\frac{\partial\Phi}{\partial y}{\bf{i}})\)
单元中的\(\Phi^e\)用插值函数表示\(\Phi^e=N_1^e \Phi_1^e+N_2^e \Phi_2^e+N_3^e \Phi_3^e=\sum\limits_{j=1}^{3}N_j^e \Phi_j^e\)
又由\(\frac{\partial \Phi^e}{\partial x}=\sum\limits_{j=1}^{3} \Phi_j^e\frac{\partial N_j^e}{\partial x} \quad \frac{\partial \Phi^e}{\partial y}=\sum\limits_{j=1}^{3} \Phi_j^e\frac{\partial N_j^e}{\partial y} \quad \frac{\partial N_j^e}{\partial x}=\frac{1}{2\Delta^e}p_j^e \quad \frac{\partial N_j^e}{\partial y}=\frac{1}{2\Delta^e}q_j^e\)
\(\Rightarrow R_i^e=\iint\limits_{\Omega ^e}\sum\limits_{j=1}^{3}\Phi_j^e(\alpha_x\frac{\partial N_i^e}{\partial x}\frac{\partial N_j^e}{\partial x}+\alpha_y\frac{\partial N_i^e}{\partial y}\frac{\partial N_j^e}{\partial y}+\beta N_i^e N_j^e)dxdy-\iint\limits_{\Omega ^e}N_i^e fdxdy-\oint\limits_{\Gamma^e}N_i^e{\bf{D}}\cdot{\bf{n^e}}d\Gamma\)
\(i=1\)时有\(R_1^e=\iint\limits_{\Omega ^e}\Phi_1^e(\alpha_x\frac{\partial N_1^e}{\partial x}\frac{\partial N_1^e}{\partial x}+\alpha_y\frac{\partial N_1^e}{\partial y}\frac{\partial N_1^e}{\partial y}+\beta N_1^e N_1^e)dxdy\)
\(+\iint\limits_{\Omega ^e}\Phi_2^e(\alpha_x\frac{\partial N_1^e}{\partial x}\frac{\partial N_2^e}{\partial x}+\alpha_y\frac{\partial N_1^e}{\partial y}\frac{\partial N_2^e}{\partial y}+\beta N_1^e N_2^e)dxdy\)
\(+\iint\limits_{\Omega ^e}\Phi_3^e(\alpha_x\frac{\partial N_1^e}{\partial x}\frac{\partial N_3^e}{\partial x}+\alpha_y\frac{\partial N_1^e}{\partial y}\frac{\partial N_3^e}{\partial y}+\beta N_1^e N_3^e)dxdy-\iint\limits_{\Omega ^e}N_1^e fdxdy-\oint\limits_{\Gamma^e}N_1^e{\bf{D}}\cdot{\bf{n^e}}d\Gamma\)
\(R_2^e\)\(R_3^e\)同理)
写成矩阵形式:
\(\left\{ {\begin{array}{*{20}{c}} R_1^e \\ R_2^e \\ R_3^e \end{array}}\right\}=\left[ {\begin{array}{*{20}{c}} k_{11}^e&k_{12}^e&k_{13}^e \\ k_{21}^e&k_{22}^e&k_{23}^e \\ k_{31}^e&k_{32}^e&k_{33}^e \end{array}}\right]\left\{ {\begin{array}{*{20}{c}} \Phi_1^e \\ \Phi_2^e \\ \Phi_3^e \end{array}}\right\}-\left\{ {\begin{array}{*{20}{c}} b_1^e \\ b_2^e \\ b_3^e \end{array}}\right\}-\left\{ {\begin{array}{*{20}{c}} g_1^e \\ g_2^e \\ g_3^e \end{array}}\right\}\)
矩阵可简化记为:\(\{R^e\}=[k^e]\{\Phi^e\}-\{b^e\}\{g^e\}\)
其中\(k_{ij}^e=\iint\limits_{\Omega ^e}\sum\limits_{j=1}^{3}\Phi_j^e(\alpha_x\frac{\partial N_i^e}{\partial x}\frac{\partial N_j^e}{\partial x}+\alpha_y\frac{\partial N_i^e}{\partial y}\frac{\partial N_j^e}{\partial y}+\beta N_i^e N_j^e)dxdy \quad i=1,2,3 \quad j=1,2,3\)
\(b_i^e=\iint\limits_{\Omega ^e}N_i^e fdxdy \quad g_i^e=\oint\limits_{\Gamma^e}N_i^e{\bf{D}}\cdot{\bf{n^e}}d\Gamma \quad i=1,2,3\)

根据公式\(\iint\limits_{\Omega ^e}(N_1^e)^l(N_2^e)^m(N_3^e)^n dxdy=\frac{l!m!n!}{(l+m+n+2)!} \cdot 2\Delta\)
可得\(\iint\limits_{\Omega ^e}N_i dxdy=\frac{1}{3}\Delta \quad \iint\limits_{\Omega ^e}(N_i)^2 dxdy=\frac{1}{6}\Delta\)
\(\iint\limits_{\Omega ^e}N_i N_j dxdy=\frac{1}{12}\Delta\)
进而得到\(k_{ij}^e=\)\(\frac{1}{4\Delta^e}(\alpha_x^e p_i^e p_j^e+\alpha_y^e q_i^e q_j^e)\)\(+\frac{\Delta^e}{12}\beta^e(1+\delta_{ij})\quad \delta_{ij}=\left\{ {\begin{array}{*{20}{c}} 1 \quad i=j \\ 0 \quad i \ne j \end{array}}\right. \quad b_i^e=\frac{\Delta f}{3}\)

求图6的\([k]\)矩阵: 对单元1的节点进行标号,按照表1的连接矩阵标号,以逆时针顺序,将节点2、4、1依次标为①、②、③
得到矩阵\([k^{(1)}]=\left[ {\begin{array}{*{20}{c}} k_{11}^{(1)}&k_{12}^{(1)}&k_{13}^{(1)} \\ k_{21}^{(1)}&k_{22}^{(1)}&k_{23}^{(1)} \\ k_{31}^{(1)}&k_{32}^{(1)}&k_{33}^{(1)} \end{array}}\right]=\left[ {\begin{array}{*{20}{c}} k_{22}&k_{24}&k_{21} \\ k_{42}&k_{44}&k_{41} \\ k_{12}&k_{14}&k_{11} \end{array}}\right]\)
同理,根据表1得到单元2、单元3、单元4的矩阵为
\([k^{(2)}]=\left[ {\begin{array}{*{20}{c}} k_{55}&k_{54}&k_{52} \\ k_{45}&k_{44}&k_{42} \\ k_{25}&k_{24}&k_{22} \end{array}}\right] \quad [k^{(3)}]=\left[ {\begin{array}{*{20}{c}} k_{33}&k_{35}&k_{32} \\ k_{53}&k_{55}&k_{52} \\ k_{23}&k_{25}&k_{22} \end{array}}\right] \quad [k^{(4)}]=\left[ {\begin{array}{*{20}{c}} k_{55}&k_{56}&k_{54} \\ k_{65}&k_{66}&k_{64} \\ k_{45}&k_{46}&k_{44} \end{array}}\right]\)
矩阵中\(k_{ij}^{(e)}\)表示第\(e\)个单元中的第\(j\)个节点对第\(i\)个节点的影响;
\(k_{ij}\)表示全局系统中的第\(j\)个节点对第\(i\)个节点的影响。
根据上述关于各单元的矩阵得到整个系统的\([k]\)矩阵,计算方法为\([k]=\sum\limits_{e=1}^M [k^{(e)}]\)
\([k^{(2)}]\)\([k^{(4)}]\)上有元素\(k_{54}\),则对应矩阵\([k]\)的第5行第4列填\(k{54}^{(2)+(4)}\)
若所有单元对应的矩阵均无\(k_{ij}\),则\([k]\)对应位置填\(0\)
矩阵有对称性,即\(k_{ij}=k_{ji}\),因此由矩阵\([k]\)的第5行第4列填\(k_{54}^{(2)+(4)}\)可知第4行第5列填\(k_{45}^{(2)+(4)}\)
\([k]=\left[ {\begin{array}{*{20}{c}} k_{11}^{(1)}&k_{12}^{(1)}&0&k_{14}^{(1)}&0&0 \\ k_{21}^{(1)}&k_{22}^{(1)+(2)+(3)}&k_{23}^{(3)}&k_{24}^{(1)+(2)}&k_{25}^{(2)+(3)}&0 \\ 0&k_{32}^{(3)}&k_{33}^{(3)}&0&k_{35}^{(3)}&0 \\ k_{41}^{(1)}&k_{42}^{(1)+(2)}&0&k_{44}^{(1)+(2)+(4)}&k_{45}^{(2)+(4)}&k_{46}^{(4)} \\ 0&k_{52}^{(2)+(3)}&k_{53}^{(3)}&k_{54}^{(2)+(4)}&k_{55}^{(2)+(3)+(4)}&k_{56}^{(4)} \\ 0&0&0&k_{64}^{(4)}&k_{65}^{(4)}&k_{66}^{(4)} \end{array}}\right]\)
\([b]\)\([g]\)的矩阵中,其元素上标与\([k]\)矩阵对角线上元素商标相同,即
\(\{b\}=\left\{ {\begin{array}{*{20}{c}} b_{1}^{(1)} \\ b_{2}^{(1)+(2)+(3)} \\ b_{3}^{(3)} \\ b_{4}^{(1)+(2)+(4)} \\ b_{5}^{(2)+(3)+(4)} \\ b_{6}^{(4)} \end{array}} \right\} \quad \{g\}=\left\{ {\begin{array}{*{20}{c}} g_{1}^{(1)} \\ g_{2}^{(1)+(2)+(3)} \\ g_{3}^{(3)} \\ g_{4}^{(1)+(2)+(4)} \\ g_{5}^{(2)+(3)+(4)} \\ g_{6}^{(4)} \end{array}} \right\}\)

狄利赫莱边界条件的处理

注:这里没听懂。
假设上文矩阵中节点3、5、6的电磁位\(\Phi\)已知,即\(\Phi_3=p_3,\Phi_5=p_5,\Phi_6=p_6\),有两种处理方法。

(1)划0置1法
将已知\(\Phi\)的节点对应\([k]\)矩阵中的对角线元素置1,行和列上其他元素置0,得到矩阵
\([k]=\left[ {\begin{array}{*{20}{c}} k_{11}^{(1)}&k_{12}^{(1)}&0&k_{14}^{(1)}&0&0 \\ k_{21}^{(1)}&k_{22}^{(1)+(2)+(3)}&0&k_{24}^{(1)+(2)}&0&0 \\ 0&0&1&0&0&0 \\ k_{41}^{(1)}&k_{42}^{(1)+(2)}&0&0&0&0 \\ 0&0&0&0&1&0 \\ 0&0&0&0&0&1 \end{array}}\right]\)
\(\left[ {\begin{array}{*{20}{c}} k_{11}&k_{12}&k_{14} \\ k_{21}&k_{22}&k_{24} \\ k_{41}&k_{42}&k_{44} \end{array}}\right] \left[ {\begin{array}{*{20}{c}} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{array}}\right]=\left\{ {\begin{array}{*{20}{c}} b_1-k_{13}p_3-k_{15}p_5-k_{16}p_6 \\ b_2-k_{23}p_3-k_{25}p_5-k_{26}p_6 \\ b_4-k_{43}p_3-k_{45}p_5-k_{46}p_6 \end{array}}\right\}\)
这样就将原来的\(6 \times 6\)矩阵转化为\(3 \times 3\)矩阵,方便了运算。

(2)置大数法
将已知\(\Phi\)的节点对应\([k]\)矩阵中的对角线元素置一个很大的数后带入求解
如取\(k_{33}=10^{70},b_3=p_3 \times 10^{70}\)

区域单元的内边界对\(g\)无贡献,只有边界\(\Gamma\)才对\(g\)有贡献
若节点\(i\)\(\Gamma\)内部,则对应\(g_i=0\)
若节点\(i\)\(\Gamma\)上,则对应\(g_i \ne 0\)

2D有限元分析的应用

静电场问题

二维:\(-\varepsilon_r {\bf{\nabla}}\Phi=\frac{\rho}{\varepsilon_0}\)
\(-\frac{\partial}{\partial x}(\varepsilon_r\frac{\partial \Phi}{\partial x})-\frac{\partial}{\partial y}(\varepsilon_r\frac{\partial \Phi}{\partial y})=\frac{\rho}{\varepsilon_0}\)
边界:\(\left\{ {\begin{array}{*{20}{c}} \Phi=p \\ \frac{\partial \Phi}{\partial n}=0 \end{array}}\right.\)
媒质交界面:\(\left\{ {\begin{array}{*{20}{c}} \Phi^+=\Phi^- \quad \varepsilon_r^+\frac{\partial \Phi^+}{\partial n}=\varepsilon_r^-\frac{\partial \Phi^-}{\partial n} \\ E_t^+=E_t^- \quad D_n^+=D_n^- \end{array}}\right.\)

2D磁场

\({\bf{J}}=J_z{\bf{k}} \quad {\bf{\nabla}}\times{\bf{H}}={\bf{J}} \Rightarrow -\frac{1}{\mu_r}{\bf{\nabla}}^2 A_z=\mu_0 J_z{\bf{k}}\)
\({\bf{\nabla}}\times\frac{1}{\mu_r}{\bf{\nabla}}\times A_z{\bf{k}}=\mu_0 J_z{\bf{k}}\)
\(-\frac{\partial}{\partial x}(\frac{1}{\mu}\frac{\partial A_z}{\partial x})-\frac{\partial}{\partial y}(\frac{1}{\mu}\frac{\partial A_z}{\partial y})=\mu_0 J_z\)
交界面:\(\left\{ {\begin{array}{*{20}{c}} A_z^+=A_z^- \\ \frac{1}{\mu_r^+}\frac{\partial A_z^+}{\partial n}=\frac{1}{\mu_r^-}\frac{\partial A_z^-}{\partial n} \end{array}}\right.\)

参考资料