线性系统理论03-线性系统的运动分析

文章目录
  1. 1. 引言
    1. 1.1. 运动分析的实质
    2. 1.2. 解的存在性和唯一性
    3. 1.3. 零输入响应和零初始状态响应
  2. 2. 线性定常系统的运动分析
    1. 2.1. 零输入响应
    2. 2.2. 矩阵指数函数的性质
    3. 2.3. 矩阵指数函数的求解
      1. 2.3.1. 定义法
      2. 2.3.2. 特征值法
      3. 2.3.3. 有限项展开法
      4. 2.3.4. 预解矩阵法
    4. 2.4. 零初始状态响应
    5. 2.5. 系统状态运动规律的基本表达式
  3. 3. 连续时间线性时不变系统的状态转移矩阵
  4. 4. 连续时间线性时不变系统的脉冲响应矩阵
  5. 5. 参考资料

线性系统理论课程笔记
对应教材内容第三章 线性系统的运动分析的内容

引言

运动分析的实质

\(\dot x = A(t)x + B(t)u,\quad x({t_0}) = {x_0}\)
\(\dot x = Ax + Bu,\quad x(0) = {x_0},\quad t \geqslant 0\)
从数学模型出发,定量地和精确地定出系统运动的变化规律,为系统的实际运动过程作出估计。
给定初始状态\(x_0\)和外输入作用\(u\),求解出状态方程的解。

解的存在性和唯一性

①系统矩阵\(A(t)\)的各个元\(a_{ij}(t)\)在时间区间\([t_0, t_\alpha]\)上为绝对可积,即
\(\int_{t_0}^{t_\alpha}{|{a_{ij}}(t)|dt < \infty ,\quad \quad i,j = 1,2, \cdots n}\)
②输入矩阵\(B(t)\)的各个元\(b_{ij}(t)\)在时间区间\([t_0, t_\alpha]\)上为平方可积,即
\(\int_{t_0}^{t_\alpha }{ { {[{b_{ik}}(t)]}^2}dt < \infty ,\quad \quad i = 1,2, \cdots n,\quad \;k = 1,2 \cdots p}\)
③输入\(u(t)\)的各个元\(u_k(t)\)在时间区间\([t_0, t_\alpha]\)上为平方可积,即
\(\int_{t_0}^{t_\alpha}{ { {[{u_k}(t)]}^2}dt < \infty ,\quad \quad k = 1,2 \cdots p}\)

条件②③可一步合并为要求\(B(t)u(t)\)的各元在时间区间\([t_0, t_\alpha]\)上绝对可积,即
\(\int_{t_0}^{t_\alpha}{ { {[{b_{ik}}(t){u_k}(t)]}^2}dt < \infty ,\quad \quad k = 1,2 \cdots p}\)

零输入响应和零初始状态响应

线性系统满足叠加原理。在初始状态和输入向量作用下的运动,分解为两个单独的分运动。
\(x(t)=x_{ou}(t)+x_{ox}(t)\)
①自治系统(零输入响应)\(\dot x=Ax \quad x({t_0}) = {x_0}\)
②受迫系统(零初始状态响应)\(\dot x = Ax + Bu \quad x(t_0) = x_0\)

线性定常系统的运动分析

零输入响应

自治系统状态方程\(\dot x=Ax \quad x({t_0}) = {x_0}\)
\(sx-x_0=Ax \Rightarrow sx-Ax=x_0 \Rightarrow (sI-A)x=x_0 \Rightarrow x=(sI-A)^{-1}x_0=e^{At}x_0\)
结论:系统自治状态方程的解\(x_{ou}(t)=e^{At}x_0 \quad (t \geqslant 0)\) 其中\(e^{At}\)为矩阵指数函数,可以展开为
\(e^{At}=I + At + \frac{1}{2!}{A^2}{t^2} + \cdots = \sum\limits_{k=0}^\infty{\frac{1}{k!}{A^k}{t^k}}\)

渐近稳定的充要条件:
对于线性定常系统,零输入响应最终趋向于系统平衡状态\(x=0\)
当且仅当\(e^{At}\)最终趋于0,即\(\mathop {\lim }\limits_{t \to \infty } e^{At} = 0\)

矩阵指数函数的性质

\(\mathop {\lim }\limits_{t \to 0} {e^{At}} = I\)
\({e^{A(t + \tau )}} = {e^{At}} \cdot {e^{A\tau }} = {e^{A\tau }} \cdot {e^{At}}\)
\(e^{At}\)总是非奇异的,且其逆为:\({({e^{At}})^{ - 1}} = {e^{ - At}}\)
④设\(A\)\(F\)为两个同维可交换方阵,即\(AF = FA\),则有\({e^{(A + F)t}} = {e^{At}}{e^{Ft}} = {e^{Ft}}{e^{At}}\)
\(\frac{d}{dt}{e^{At}} = A{e^{At}} = {e^{At}}A\)
\(\frac{d}{dt}{e^{ - At}} = - A{e^{ - At}} = - {e^{ - At}}A\)
\({({e^{At}})^m} = {e^{A(mt)}},\quad m = 0,1,2, \cdots\)

矩阵指数函数的求解

定义法

\(e^{At}=I + At + \frac{1}{2!}{A^2}{t^2} + \cdots = \sum\limits_{k=0}^\infty{\frac{1}{k!}{A^k}{t^k}}\)

特征值法

\(\bar A = diag(\begin{array}{*{20}{c}}{\lambda _1}&{\lambda _2}& \cdots &{ {\lambda _n})} \end{array}\),则有\({e^{\bar At}} = diag(\begin{array}{*{20}{c}}{e^{\lambda _1 t}}&{e^{\lambda _2 t}}& \cdots &{e^{\lambda _n t})}\end{array}\)
\(\bar A = {P^{ - 1}}AP \quad A = P\bar A{P^{ - 1}}\),则有\({e^{At}} = P{e^{\bar At}}{P^{ - 1}}\)
【例1】\(A = \left[ {\begin{array}{*{20}{c}}0&1&0 \\ 0&0&1 \\ -6&-11&-6 \end{array}} \right]\)
\(|\lambda I-A|=\lambda^3+6\lambda^2+11\lambda+6=(\lambda+1)(\lambda+2)(\lambda+3)=0 \quad \Rightarrow \quad \lambda_1=1,\lambda_2=2,\lambda_3=3\)
由等式\(\lambda_i v_i=Av_i\),解方程组\(|\lambda_i I-A|v_i=0\),得到特征向量
\[{\begin{array}{*{20}{c}} {v_1=\left[ {\begin{array}{*{20}{c}} 1\\-1\\1 \end{array}}\right]}&{v_2=\left[ {\begin{array}{*{20}{c}} 1\\-2\\4 \end{array}}\right]}&{v_3=\left[ {\begin{array}{*{20}{c}} 1\\-3\\9 \end{array}}\right]} \end{array}}\] 得到\(P =[v_1,v_2,v_3] = \left[ {\begin{array}{*{20}{c}}1&1&1 \\ -1&-2&-3 \\ 1&4&9\end{array}} \right]\)
该式构成范德蒙德行列式,其行列式值\(|P|=[(-2)-(-1)][(-3)-(-2)][(-3)-(-1)]=-2\) 求其逆矩阵\(P^{-1} = \frac{P^*}{|P|}=\frac{1}{2}\left[ {\begin{array}{*{20}{c}}6&5&1 \\ -6&-8&-2 \\ 2&3&1\end{array}} \right]\)
则有\(\bar A = {P^{ - 1}}AP = \left[ {\begin{array}{*{20}{c}}{ - 1}&0&0 \\ 0&{ - 2}&0 \\ 0&0&{ - 3} \end{array}} \right]\)
\(\bar A = {P^{ - 1}}AP \quad \Rightarrow \quad A = P\bar A{P^{ - 1}}\)计算出

\({e^{At}} = P{e^{\bar At}}{P^{ - 1}} = P\left[ {\begin{array}{*{20}{c}} e^{-t}&0&0 \\ 0&e^{-2t}&0 \\ 0&0&e^{-3t} \end{array}} \right]{P^{ - 1}}\)
\(= \left[ {\begin{array}{*{20}{c}}{3{e^{ - t}} - 3{e^{ - 2t}} + {e^{ - 3t}}}&{\frac{5}{2}{e^{ - t}} - 4{e^{ - 2t}} + \frac{3}{2}{e^{ - 3t}}}&{\frac{1}{2}{e^{ - t}} - {e^{ - 2t}} + \frac{1}{2}{e^{ - 3t}}} \\ { - 3{e^{ - t}} + 6{e^{ - 2t}} - 3{e^{ - 3t}}}&{ - \frac{5}{2}{e^{ - t}} + 8{e^{ - 2t}} - \frac{9}{2}{e^{ - 3t}}}&{ - \frac{1}{2}{e^{ - t}} + 2{e^{ - 2t}} - \frac{3}{2}{e^{ - 3t}}} \\ {3{e^{ - t}} - 12{e^{ - 2t}} + 9{e^{ - 3t}}}&{\frac{5}{2}{e^{ - t}} - 16{e^{ - 2t}} + \frac27{2}{e^{ - 3t}}}&{\frac{1}{2}{e^{ - t}} - 4{e^{ - 2t}} + \frac{9}{2}{e^{ - 3t}}} \end{array}} \right]\)

注:其中\(P^*\)\(P\)的伴随矩阵
伴随矩阵公式\(A^*=\left[ {\begin{array}{*{20}{c}}A_{11}&A_{21}&A_{31} \\ A_{12}&A_{22}&A_{32} \\ A_{13}&A_{23}&A_{33}\end{array}} \right]\)
其中\(A_{ij}=(-1)^{i+j}M_{ij}\)为元素\(a_{ij}\)的代数余子式。

约当阵的情况:
\(\bar A = J = diag(\begin{array}{*{20}{c}}{J_1}&{J_2}& \cdots &{J_l}) \end{array}\)
其中\({J_i} = \left[ {\begin{array}{*{20}{c}}{\lambda _i}&1&0& \cdots &0 \\ 0&{\lambda _i}&1& \cdots &0 \\ 0&0&{\lambda _i}& \cdots &0 \\ {}&{}& \cdots &{}&{} \\ 0&0&0& \cdots &{\lambda _i} \end{array}} \right]\)
\({e^{\bar At}} = diag(\begin{array}{*{20}{c}}e^{J_1}t&e^{J_2}t& \cdots &e^{J_l}t) \end{array}\)
其中\({e^{ {J_i}t}} = \left[ {\begin{array}{*{20}{c}}{ {e^{ {\lambda _i}t}}}&{t{e^{ {\lambda_i}t}}}&{\frac{1}{2!} {t^2}{e^{ {\lambda_i}t}}}&\cdots &{} \\ 0&{ {e^{ {\lambda _i}t}}}&{t{e^{ {\lambda _i}t}}}& \cdots &{} \\ 0&0&{ {e^{ {\lambda _i}t}}}& \cdots &{} \\ {}&{}& \cdots &{}&{} \\ 0&0&0& \cdots &{ {e^{ {\lambda _i}t}}} \end{array}} \right]\)

有限项展开法

\(\lambda_1,\lambda_2,\cdots,\lambda_n\)\(A\)\(n\)个互异特征值
\({e^{At}} = {\alpha _0}I + {\alpha _1}A + {\alpha _2}{A^2} + \cdots {\alpha _{n - 1}}{A^{n - 1}}\)
\(\left\{ \begin{gathered}{e^{ {\lambda _1}t}} = {\alpha _0} + {\alpha _1}{\lambda _1} + {\alpha _2}{\lambda _1}^2 + \cdots {\alpha _{n - 1}}{\lambda _1}^{n - 1} \hfill \\{e^{ {\lambda _2}t}} = {\alpha _0} + {\alpha _1}{\lambda _2} + {\alpha _2}{\lambda _2}^2 + \cdots {\alpha _{n - 1}}{\lambda _2}^{n - 1} \hfill \\ \cdots \hfill \\{e^{ {\lambda _n}t}} = {\alpha _0} + {\alpha _1}{\lambda _n} + {\alpha _2}{\lambda _n}^2 + \cdots {\alpha _{n - 1}}{\lambda _n}^{n - 1} \hfill \\ \end{gathered} \right.\)
\(\lambda_i\)\(l\)重特征值,则相应的\(l\)个方程为
\(\left\{ \begin{gathered} {e^{ {\lambda _i}t}} = {\alpha _0} + {\alpha _1}{\lambda _i} + {\alpha _2}{\lambda _i}^2 + \cdots + {\alpha _{n - 1}}{\lambda _i}^{n - 1} \hfill \\ \frac{ {\text{d}}}{ { {\text{d}}{\lambda _i}}}{e^{ {\lambda _i}t}} = {\alpha _1} + 2{\alpha _2}{\lambda _i} + \cdots + (n - 1){\alpha _{n - 1}}{\lambda _i}^{n - 2} \hfill \\ \cdots \hfill \\ \frac{ { { {\text{d}}^{(l - 1)}}}}{ { {\text{d}}{\lambda _i}^{(l - 1)}}}{e^{ {\lambda _i}t}} = {\alpha _{l - 1}}(l - 1)! + {\alpha _l}l!{\lambda _i} + \cdots + {\alpha _{n - 1}}\frac{ {(n - 1)!}}{ {(n - l)!}}{\lambda _i}^{n - l} \hfill \\ \end{gathered} \right.\)
【例2】\(A = \left[ {\begin{array}{*{20}{c}} 0&0&-2 \\ 0&1&0 \\ 1&0&3 \end{array}}\right]\)
\(|\lambda I - A| = 0 \Rightarrow {(\lambda - 1)^2}(\lambda - 2) = 0\)
\(\Rightarrow {\lambda_1,2} = 1,{\lambda_3} = 2\)
\({e^{At}} = {\alpha _0}I + {\alpha _1}A + {\alpha _2}{A^2}\)
列出方程组\(\left\{ \begin{gathered}{e^t} = {\alpha _0} + {\alpha _1} + {\alpha _2} \hfill \\t{e^t} = {\alpha _1} + 2{\alpha _2} \hfill \\{e^{2t}} = {\alpha _0} + 2{\alpha _1} + 4{\alpha _2} \hfill \\ \end{gathered} \right.\)
解得\(\left\{ \begin{gathered}{\alpha _0} = - 2t{e^t} + {e^{2t}} \hfill \\{\alpha _1} = 3t{e^t} + 2{e^t} - 2{e^{2t}} \hfill \\{\alpha _2} = - t{e^t} - {e^t} + {e^{2t}} \hfill \\ \end{gathered} \right.\)
进而得到\({e^{At}} = {\alpha _0}I + {\alpha _1}A + {\alpha _2}{A^2}\)
\(= ( - 2t{e^t} + {e^{2t}})I + (3t{e^t} + 2{e^t} - 2{e^{2t}})A + ( - t{e^t} - {e^t} + {e^{2t}}){A^2}\)
\(= \left[ {\begin{array}{*{20}{c}}{2{e^t} - {e^{2t}}}&0&{2{e^t} - 2{e^{2t}}} \\ 0&{ {e^t}}&0 \\ { - {e^t} + {e^{2t}}}&0&{ - {e^t} + 2{e^{2t}}} \end{array}} \right]\)

预解矩阵法

\({e^{At}} = {L^{ - 1}}[{\left( {sI - A} \right)^{ - 1}}]\)
【例3】\(A = \left[ {\begin{array}{*{20}{c}} 0&1 \\ -2&-3 \end{array}}\right]\)
\((sI-A)^{-1}=\left[ {\begin{array}{*{20}{c}} s&-1 \\ 2&s+3 \end{array}}\right]^{-1}=\left[ {\begin{array}{*{20}{c}} \frac{s+3}{(s+1)(s+2)}&\frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)}&\frac{s}{(s+1)(s+2)} \end{array}}\right]=\left[ {\begin{array}{*{20}{c}} \frac{2}{s+1}-\frac{1}{s+2}&\frac{1}{s+1}-\frac{1}{s+2} \\ -\frac{2}{s+1}+\frac{2}{s+2}&-\frac{1}{s+1}+\frac{2}{s+2} \end{array}}\right]\)
\(L^{-1}[(sI-A)^{-1}]=\left[ {\begin{array}{*{20}{c}} 2e^{-t}-e^{-2t}&e^{-t}-e^{-2t} \\ -2e^{-t}+2e^{-2t}&-e^{-t}+2e^{-2t} \end{array}}\right]\)

零初始状态响应

线性定常系统的零初始状态响应\(x_{ox}(t)\)具有以下表达式:
\(x_{ox}(t)=\int_0^t { {e^{A(t - \tau )}}Bu(\tau ){\text{d}}\tau}\)
【例4】\(\dot x = \left[ {\begin{array}{*{20}{c}} 0&1 \\ -2&-3 \end{array}}\right]x + \left[ {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}}\right]u,\quad t\geqslant 0\)
其中,初始状态\(x_1(0)=x_2(0)=0\),输入\(u(t)=I(t)\)
由【例3】知\(e^{A(t-\tau)}=\left[ {\begin{array}{*{20}{c}} 2e^{-(t-\tau)}-e^{-2(t-\tau)}&e^{-(t-\tau)}-e^{-2(t-\tau)} \\ -2e^{-(t-\tau)}+2e^{-2(t-\tau)}&-e^{-(t-\tau)}+2e^{-2(t-\tau)} \end{array}}\right]\) \(\Rightarrow x_{ox}(t)=\int_0^t { {e^{A(t - \tau )}}Bu(\tau ){\text{d}}\tau}=\int_0^t {\left[ {\begin{array}{*{20}{c}} e^{-(t-\tau)}-e^{-2(t-\tau)} \\ -e^{-(t-\tau)}+2e^{-2(t-\tau)} \end{array}}\right]{\text{d}}\tau}=\left[ {\begin{array}{*{20}{c}} \frac{1}{2}-e^{-t}+\frac{1}{2}e^{-2t} \\ e^{-t}-e^{-2t} \end{array}}\right]\)

系统状态运动规律的基本表达式

同时作用初始状态和输入的状态方程的解
对初始时刻\(t_0=0\),有表达式\(x(t) = {e^{At}}{x_0} + \int_0^t {e^{A(t - \tau )}Bu(\tau ){\text{d}}\tau }, \quad t \geqslant 0\)
对初始时刻\(t_0 \ne 0\),有表达式\(x(t) = {e^{A(t - {t_0})}}{x_0} + \int_{t_0}^t {e^{A(t - \tau )}Bu(\tau ){\text{d}}\tau ,\quad t \geqslant {t_0}}\)

连续时间线性时不变系统的状态转移矩阵

定义:矩阵方程\(\dot \Phi (t - {t_0})=A\Phi (t - {t_0}),\quad \Phi (0)=I\)的解\(\Phi (t - {t_0})\)称为状态转移矩阵。
\(t_0=0\)时,\(\Phi (t) = {e^{At}}\quad \quad t \geqslant 0\)
\(t_0 \ne 0\)时,\(\Phi (t - {t_0}) = {e^{A(t - {t_0})}},\quad t \geqslant {t_0}\)

基于状态转移矩阵的系统响应表达式:
\({x_{ou}}(t) = \Phi (t - {t_0}){x_0}\)
\({x_{ox}}(t) = \int_{t_0}^t {\Phi (t - \tau )Bu(\tau ){\text{d}}\tau } \quad t \geqslant {t_0}\)
\(x(t) = \Phi (t - {t_0}){x_0} + \int_{t_0}^t {\Phi (t - \tau )Bu(\tau ){\text{d}}\tau }\)

状态转移矩阵的特性:
\(\Phi (0) = I\)
\({\Phi ^{ - 1}}(t) = \Phi ( - t) \quad {\Phi ^{ - 1}}(t - {t_0}) = \Phi ({t_0} - t)\)
\(\Phi ({t_2} - {t_1})\Phi ({t_1} - {t_0}) = \Phi ({t_2} - {t_0})\)
\(\Phi ({t_2} + {t_1}) = \Phi ({t_2})\Phi ({t_1}) = \Phi ({t_1})\Phi ({t_2})\)
\(\Phi (mt) = {\left[ {\Phi (t)} \right]^m}\)
\(\frac{\text{d}}{ {\text{d}}t}\Phi (t - {t_0}) = A\Phi (t - {t_0}) = \Phi (t - {t_0})A\)
\(\frac{\text{d}}{ {\text{d}t}}{\Phi ^{ - 1}}(t - {t_0}) = - A\Phi ({t_0} - t) = - \Phi ({t_0} - t)A\)

连续时间线性时不变系统的脉冲响应矩阵

注:自学内容,仅供参考。

定义:对于输入维数为\(p\),输出维数为\(q\)的连续时间线性时不变系统,脉冲响应矩阵定义为零初始状态下以脉冲响应\(h_{ij}(t-\tau)\)为元构成的一个\(q \times p\)输出响应矩阵。
其中\(h_{ij}(t-\tau)\)为第\(j\)个输入端在时刻\(\tau\)加以单位脉冲\(\delta(t-\tau)\)而所有其他输入为零时,在第\(i\)个输出端的脉冲响应 \[H(t - \tau ) = \left[ {\begin{array}{*{20}{c}}{h_{11}(t - \tau )}&{h_{12}(t - \tau )}& \cdots &{h_{1p}(t - \tau )} \\ {h_{21}(t - \tau )}&{h_{22}(t - \tau )}& \cdots &{h_{2p}(t - \tau )} \\ \cdots & \cdots & \cdots & \cdots \\ {h_{q1}(t - \tau )}&{h_{q2}(t - \tau )}& \cdots &{h_{qp}(t - \tau )} \end{array}} \right]\]\(H(t - \tau ) = 0\)\(\forall \tau\)\(\forall t \prec \tau\)

输出响应:
\(p\)维输入,\(q\)维输出连续时间线性时不变系统,假设初始状态为零,则系统在任意输入\(u\)作用下基于脉冲响应矩阵的输出响应\(y(t)\)
\(y(t) = \int_{t_0}^t {H(t - \tau )u(\tau ){\text{d}}\tau } = \int_{t_0}^t {H(\tau )u(t - \tau ){\text{d}}\tau \quad t \geqslant {t_0}}\)

脉冲响应矩阵\(H(t)\)和传递函数矩阵\(G(s)\)之间的关系:
\(G(s) = L\left[ {H(t)} \right],H(t) = {L^{ - 1}}\left[ {G(s)} \right]\)
\(G(s) = C{(sI - A)^{ - 1}}B + D\)

对连续时间线性时不变系统\((A, B, C, D)\),设初始状态为零,则系统的脉冲响应矩阵为
\(H(t - \tau ) = C{e^{A(t - \tau )}}B + D\delta (t - \tau )\)
\(= C\Phi (t - \tau )B + D\delta (t - \tau )\)

①两个代数等价的连续时间线性时不变系统具有相同的脉冲响应矩阵。
②两个代数等价的连续时间线性时不变系统具有相同的“输出零状态响应”和“输出零输入响应”。

参考资料