电磁场数值分析与计算01-场论

文章目录
  1. 1. 目录
  2. 2. 基础概念
  3. 3. 梯度
  4. 4. 散度
  5. 5. 旋度
  6. 6. 矢量微分算子的运算
  7. 7. 常见的几种场
  8. 8. 常用的场变量
  9. 9. 矢量场唯一性定理
  10. 10. 参考资料

电磁场数值分析与计算课程笔记
无PPT,按照板书整理,若有错误敬请指正。

目录

1.电磁场数值分析与计算01-场论
2.电磁场数值分析与计算02-Maxwell方程组
3.电磁场数值分析与计算03-电磁场数值分析的定解问题
4.电磁场数值分析与计算04-边界条件
5.电磁场数值分析与计算05-有限元方法介绍
6.电磁场数值分析与计算06-2D有限元分析

基础概念

标量(Scalar):只有大小,没有方向的量。如质量、温度、电流等。
矢量(Vector):既有大小又有方向的量。如力、速度、电场强度、电流密度等。
单位矢量\(\bf{e}\):模为1的矢量。

矢量的加减:遵循平行四边形法则。
矢量的数乘:矢量的模乘以对应的倍数,乘以正数时方向不变,乘以负数时方向相反。
矢量的点积:\(\bf{A} \cdot \bf{B} = |\bf{A}||\bf{B}|\cos \theta\)(所得结果是一个数)
图1 矢量的点积
矢量的叉积:\(\bf{A} \times \bf{B} = \left| {\begin{array}{*{20}{c}} \bf{i}&\bf{j}&\bf{k} \\ A_x&A_y&A_z \\ B_x&B_y&B_z \end{array}} \right|=|\bf{A}||\bf{B}|\sin \theta \bf{e}\)
其中\({\bf{A} }=(A_x,A_y,A_z)\)\({\bf{B} }=(B_x,B_y,B_z)\)。矢量\(\bf{e}\)的方向与矢量\(\bf{A}\)\(\bf{B}\)所在的平面垂直,\(\bf{A}\)\(\bf{B}\)\(\bf{e}\)成右手系。
图2 矢量的叉积

场的定义:
(1)物理定义:在一个被界定的或无限扩展的空间内,处处存在着某种必须予以重视,研究的效应。
(2)数学定义:场是一个函数,描述在空间特定区域内每一个点上的某一物理量。

场的分类:
标量场(Scalar Field):用标量函数表示的场,如温度场\(T(x,y,z,t)\),注意这里的\(t\)是温度场的一个变量——时间,不是温度。
矢量场(Vector Field):用矢量函数表示的场,如力场可表示为: \[{\bf{F} }(x,y,z,t)=F_x(x,y,z,t){\bf{x} }+F_y(x,y,z,t){\bf{y} }+F_z(x,y,z,t){\bf{z} }\] 其中\(F_x\)\(F_y\)\(F_z\)为坐标轴方向的投影分量,\(\bf{x}\)\(\bf{y}\)\(\bf{z}\)为坐标轴方向单位矢量。
按照场函数值是否随时间变化而变化,即场函数中是否含有时间变量,可以将场分为稳定场(Steady Field)与时变场(Time Varying Field)。

梯度

梯度用于描述标量场的空间变化率,只有标量场有梯度,矢量场没有梯度。
图3 梯度

推导过程:令\(f(x,y,z)\)\(x\)\(y\)\(z\)的可微函数
\(\begin{gathered} {df} = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz \hfill \\ = (\frac{\partial f}{\partial x}{\bf{i} },\frac{\partial f}{\partial y}{\bf{j} },\frac{\partial f}{\partial z}{\bf{k} }) \cdot (dx{\bf{i} },dy{\bf{j} },dz{\bf{k} }) \hfill \\ = (\frac{\partial f}{\partial x}{\bf{i} },\frac{\partial f}{\partial y}{\bf{j} },\frac{\partial f}{\partial z}{\bf{k} }) \cdot d{\bf{l} } = {\bf{N} } \cdot d{\bf{l} } \hfill \\ \end{gathered}\)
方向导数\(\frac{df}{dl}={\bf{N} } \cdot \frac{d{\bf{l} } }{dl} = {\bf{N} } \cdot {\bf{a_l} } = N{\bf{a_n} } \cdot {\bf{a_l} } \Rightarrow {\left. {\frac{df}{dl} } \right|_{\max} } = N\)
其中\(d{\bf{l} }=(dx{\bf{i} },dy{\bf{j} },dz{\bf{k} })\)为长度微元,\(\bf{a_l}\)为沿\(d{\bf{l} }\)方向的单位矢量。
矢量\(\bf{N}\)为标量函数的梯度,\(\bf{a_n}\)为沿梯度方向的单位矢量。当\(\bf{a_n}\)\(\bf{a_l}\)的夹角为0(重叠时),方向导数\(\frac{df}{dl}\)取得最大值\(N\),这个最大值\(N\)就是函数\(f\)在所研究点的最大变化率,即梯度的大小(梯度的模)。梯度的方向是发生最大变化率的方向(\(\bf{a_n}\)的方向)。
梯度公式\(grad{\bf{f} } = {\bf{\nabla} } f = \frac{\partial f}{\partial x}{\bf{i} }+\frac{\partial f}{\partial y}{\bf{j} }+\frac{\partial f}{\partial z}{\bf{k} }\)
梯度的模\(|{\bf{\nabla} } f|=\sqrt{(\frac{\partial f}{\partial x})^2+(\frac{\partial f}{\partial y})^2+(\frac{\partial f}{\partial z})^2}\)
注:方向导数是标量,梯度是矢量。

散度

场线(矢量线):曲线上每一点的切线方向代表了该点矢量场的方向。曲线的疏密程度反映矢量的大小变化趋势。
图4 场线

通量的物理意义:反映某一空间内场源点的特性。
若为开放曲面,则有通量\(\Phi = \iint\limits_S { {\bf{B} }(x,y,z){\bf{n} } }\cdot ds\)
若为闭合曲面,则有通量\(\Phi = \oint\limits_S { {\bf{B} }(x,y,z){\bf{n} } }\cdot ds\)
\(\Phi>0\),穿出多于穿入,说明S内有发出矢量线的正源;
\(\Phi<0\),穿出少于穿入,说明S内有汇集矢量线的负源;
\(\Phi=0\),穿出等于穿入,说明S内无源或源的正负代数和为0;

散度用于描述矢量场中某一点处单位体积内所发出的流通量(流通量是标量函数,也就是说散度是标量)。
散度公式:\(div{\bf B} = \mathop {\lim }\limits_{\Delta V \to 0} \frac{ {\oint\limits_{\Delta S} { {\bf B} \cdot d{\bf S} } } }{\Delta V}\)
推导过程:
图5 散度数学推导

取中心点\(M(x,y,z)\)
对于平面\(S_1\)(▱ABCD)有\(\iint\limits_{S_1} { {\bf{B} } \cdot {\bf{n} } }ds =\iint\limits_{S_1} { {\bf{B} } \cdot {\bf{i} } }ds = \iint\limits_{S_1} {B_x}ds\)
\(\approx \iint\limits_{S_1} {B_x}(x + \frac{\Delta x}{2},y,z)ds = B_x(x + \frac{\Delta x}{2},y,z)\Delta y\Delta z\)
这里使用▱ABCD中心点\((x + \frac{\Delta x}{2},y,z)\)的函数值来近似代表平面上各点的函数值。
同理,对于平面\(S_2\)(▱EFGH)有\(\iint\limits_{S_2} { {\bf{B} } \cdot {\bf{n} } }ds = -\iint\limits_{S_2} {B_x}ds = -B_x(x - \frac{\Delta x}{2},y,z)\Delta y\Delta z\)
由式①②得\(\iint\limits_{S_1 + S_2} { {\bf{B} } \cdot {\bf{n} } }ds = {B_x}(x + \frac{ {\Delta x} }{2},y,z)\Delta y\Delta z - {B_x}(x - \frac{ {\Delta x} }{2},y,z)\Delta y\Delta z = \frac{ {[{B_x}(x + \frac{ {\Delta x} }{2},y,z) - {B_x}(x - \frac{ {\Delta x} }{2},y,z)]\Delta x\Delta y\Delta z} }{ {\Delta x} }\)
\(\Delta V=\Delta x\Delta y\Delta z\),得\(\frac{\iint\limits_{ {S_1} + {S_2} } { {\bf{B} } \cdot {\mathbf{n} } }ds}{\Delta V} \approx \frac{ { {B_x}(x + \frac{\Delta x}{2},y,z) - {B_x}(x - \frac{\Delta x}{2},y,z)} }{\Delta x}\)
\(\mathop {\lim }\limits_{V \to 0} \frac{ {\iint\limits_{ {S_1} + {S_2} } { {\bf{B} } \cdot {\bf{n} } }ds} }{\Delta V} = \frac{\partial {B_x} }{\partial x}\)
同理,对于平面\(S_3\)(▱BCFE)与平面\(S_4\)(▱ADGH),有\(\mathop {\lim }\limits_{V \to 0} \frac{ {\iint\limits_{ {S_3} + {S_4} } { {\bf{B} } \cdot {\bf{n} } }ds} }{\Delta V} = \frac{\partial {B_y} }{\partial y}\)
对于平面\(S_5\)(▱CDGF)与平面\(S_6\)(▱ABEH),有\(\mathop {\lim }\limits_{V \to 0} \frac{ {\iint\limits_{ {S_5} + {S_6} } { {\bf{B} } \cdot {\bf{n} } }ds} }{\Delta V} = \frac{\partial {B_z} }{\partial z}\)
综上可得\(\mathop {\lim }\limits_{\Delta V \to 0} \frac{ {\oint\limits_{\Delta S} { {\bf B} \cdot d{\bf S} } } }{\Delta V} = \frac{\partial {B_x} }{\partial x} + \frac{\partial {B_y} }{\partial y} + \frac{\partial {B_z} }{\partial z} = div{\bf B} = \bf{\nabla} \cdot \bf{B}\)
注:\({\bf n}\cdot ds=d{\bf S}\) \[div{\bf{B} } = \bf{\nabla} \cdot {\bf{B} }\left\{ {\begin{array}{*{20}{c} } { > 0 } \\ { < 0 } \\ { = 0 } \end{array} } \right. \begin{array}{*{20}{c} } 正源 \\ 负源 \\ 无源或抵消 \end{array}\] 散度的物理意义:
(1)表征矢量场的通量源的分布特性;
(2)空间中通量源的密度。
注:通量密度是矢量,通量(散度)是标量。

散度定理:一个矢量场从封闭表面向外的净通量等于该矢量的散度在该表面所包围区域中的体积分。 \[\int\limits_V {\bf{\nabla} \cdot {\bf{B} } } dV = \oint\limits_S { {\bf{B} }d{\bf{S} } }\]

旋度

矢量场的环量:矢量\(\bf{A}\)沿空间有向闭合曲线\(L\)的线积分。环量可以用于描述矢量线的形状,描述较大区域内矢量场的涡旋性质。
\[\Gamma = \oint\limits_c { {\bf{A} }d{\bf{l} } }\]\(\Gamma \ne 0\),则闭合曲线内必有旋涡源,若\(\Gamma = 0\),则闭合曲线内无旋涡源。

矢量场的环量面密度:在矢量场的一点M取单位矢量\(\bf{n}\),并在M点周围取小闭合回路\(\Delta l\),令\(\Delta l\)环绕方向与\(\bf{n}\)构成右手螺旋关系,作一个过M点且以\(\Delta l\)为边界,\(\bf{n}\)为法线方向的小曲面\(\Delta S\)。若极限\(\mathop {\lim }\limits_{\Delta S \to 0} \frac{ {\oint\limits_{\Delta l} { {\bf{A} }d{\bf{l} } } } }{\Delta S}\)存在,则该极限值为矢量场\(\bf{A}\)在M点沿方向\(\bf{n}\)的环量面密度。

矢量场的旋度:若有一矢量,其大小等于某点最大环量面密度,方向为该环的法线方向,那么该矢量称为该点矢量场的旋度。
\[rot {\bf{A} } = {\bf{n} } \mathop {\lim }\limits_{\Delta S \to 0} \frac{ {\oint\limits_{\Delta l} { {\bf{A} }d{\bf{l} } } } }{\Delta S}\] 推导过程:
图6 旋度数学推导

取▱ABCD的中心点坐标为\(M(x,y,z)\)
对于▱ABCD上的路径\(C_B\)\(\int\limits_{C_B} { {\bf{A}} \cdot {\bf{t} } } dl = \int\limits_{C_B} {A_x} dx \approx {A_x}(x,y - \frac{\Delta y}{2},z)\Delta x\)
对于▱ABCD上的路径\(C_T\)\(\int\limits_{C_T} { {\bf{A}} \cdot {\bf{t} } } dl = -\int\limits_{C_T} {A_x} dx \approx - {A_x}(x,y + \frac{\Delta y}{2},z)\Delta x\)
\(\Delta S=\Delta x\Delta y\),由式①②得\(\int\limits_{C_B + C_T} { {\bf{A}} \cdot {\bf{t} } } dl\)
\(= {A_x}(x,y - \frac{\Delta y}{2},z)\Delta x - {A_x}(x,y + \frac{\Delta y}{2},z)\Delta x\)
\(= -[{A_x}(x,y + \frac{\Delta y}{2},z) - {A_x}(x,y - \frac{\Delta y}{2},z)]\Delta x\)
\(= - \frac{ {A_x}(x,y + \frac{\Delta y}{2},z) - {A_x}(x,y - \frac{\Delta y}{2},z)}{\Delta y} \Delta S\)
进而得\(\mathop {\lim }\limits_{\Delta S \to 0} \frac{ {\int\limits_{ {C_B} + {C_T}} { {\bf{A}} \cdot {\mathbf{t}}} dl}}{\Delta S} = - \frac{ {A_x}(x,y + \frac{\Delta y}{2},z) - {A_x}(x,y - \frac{\Delta y}{2},z)}{\Delta y} \approx - \frac{\partial A_x}{\partial y}\)
同理,对▱ABCD上的路径\(C_L\)\(C_R\)进行计算,得到\(\mathop {\lim }\limits_{\Delta S \to 0} \frac{ {\int\limits_{ {C_L} + {C_R}} { {\bf{A}} \cdot {\mathbf{t}}} dl}}{\Delta S} \approx \frac{\partial A_y}{\partial x}\)
由③④可知,以向量\(\bf{k}\)(z轴正方向)为法线方向时,有\(\oint\limits_{ {C_L} + {C_R} + {C_B} + {C_T}} { {\bf{A}} \cdot {\bf{t}}} dl = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\)
同理,对法线向量为\(\bf{i}\)(x轴正方向)的平面▱AEFB上的路径进行计算,得到对应的值为\(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\)
对法线向量为\(\bf{j}\)(y轴正方向)的平面▱AEHD上的路径进行计算,得到对应的值为\(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\)
由⑤⑥⑦可得旋度公式 \[rot {\bf{A} } = {\bf{\nabla} } \times {\bf{A} } = \left| {\begin{array}{*{20}{c}} {\bf{i} }&{\bf{j} }&{\bf{k} } \\ {\frac{\partial }{ {\partial x}}}&{\frac{\partial }{ {\partial y}}}&{\frac{\partial }{ {\partial z}}} \\ {A_x}&{A_y}&{A_z} \end{array}} \right| ={\bf{i} }(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}) + {\bf{j} }(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}) + {\bf{k} }(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y})\] 注:环量面密度虽然与方向有关,但它是标量,旋度是矢量。这里与方向导数和梯度比较类似,可以对照记忆。

斯托克斯定理:\(\int\limits_S {({\bf{\nabla}} \times {\bf{F}})d{\bf{S}} = \oint\limits_L { {\bf{F}} \cdot d{\bf{l}}} }\)

矢量微分算子的运算

Nabla算子符号为\(\bf{\nabla}\),是一种矢量形式的一阶微分算子。它是一种运算符,用于简化计算公式。
定义:\(\bf{\nabla} = \frac{\partial}{\partial x}{\bf{i}} + \frac{\partial}{\partial y}{\bf{j}} + \frac{\partial}{\partial z}{\bf{k}}\)
基本运算:
①梯度(直接作用于标量函数): \[gradu = {\bf{\nabla} } u = \frac{\partial u}{\partial x}{\bf{i} }+\frac{\partial u}{\partial y}{\bf{j} }+\frac{\partial u}{\partial z}{\bf{k} }\] ②散度(与矢量函数点积): \[div{\bf B} = \bf{\nabla} \cdot \bf{B} = \frac{\partial {B_x} }{\partial x} + \frac{\partial {B_y} }{\partial y} + \frac{\partial {B_z} }{\partial z}\] ③旋度(与矢量函数叉积): \[rot {\bf{A} } = {\bf{\nabla} } \times {\bf{A} } = \left| {\begin{array}{*{20}{c}} {\bf{i} }&{\bf{j} }&{\bf{k} } \\ {\frac{\partial }{ {\partial x}}}&{\frac{\partial }{ {\partial y}}}&{\frac{\partial }{ {\partial z}}} \\ {A_x}&{A_y}&{A_z} \end{array}} \right| ={\bf{i} }(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}) + {\bf{j} }(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}) + {\bf{k} }(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y})\] 性质:
\({\bf{\nabla}} \cdot {\bf{\nabla}} = {\bf{\nabla}}^2 = \frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial z}\)\({\bf{\nabla}}^2\)是Laplace算子,它是一个二阶微分算子)
\({\bf{\nabla}} \cdot {\bf{\nabla}}u = {\bf{\nabla}}^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\)(梯度场的散度)
\({\bf{\nabla}} \times {\bf{\nabla}} = 0\)
\({\bf{\nabla}} \times {\bf{\nabla}} u = 0\)(梯度场无旋)
\({\bf{\nabla}} \cdot ({\bf{\nabla}} \times {\bf{A}}) = 0\)(旋度场无散、旋度场无源)
\({\bf{\nabla}}(uv) = v{\bf{\nabla}}u + u{\bf{\nabla}}v\)
\({\bf{\nabla}} \cdot (u{\bf{A}}) = u{\bf{\nabla}} \cdot {\bf{A}} + {\bf{\nabla}}u \cdot {\bf{A}}\)
\({\bf{\nabla}} \times (u{\bf{A}}) = u{\bf{\nabla}} \times {\bf{A}} + ({\bf{\nabla}}u) \times {\bf{A}}\)
\({\bf{\nabla}} \cdot ({\bf{A}} \times {\bf{B}}) = {\bf{B}} \cdot ({\bf{\nabla}} \times {\bf{A}}) - {\bf{A}} \cdot ({\bf{\nabla}} \times {\bf{B}})\)
\({\bf{\nabla}} ({\bf{A}} \cdot {\bf{B}}) = {\bf{A}} \times ({\bf{\nabla}} \times {\bf{B}}) + {\bf{A}} ({\bf{\nabla}} \cdot {\bf{B}}) + {\bf{B}} \times ({\bf{\nabla}} \times {\bf{A}}) + {\bf{B}} ({\bf{\nabla}} \cdot {\bf{A}})\)
\({\bf{\nabla}} \times {\bf{\nabla}} \times {\bf{A}} = {\bf{\nabla}}({\bf{\nabla}} \cdot {\bf{A}}) - {\bf{\nabla}}^2 {\bf{A}}\)

常见的几种场

按照旋度与散度值分类:
①无旋无源场(平行板电容器)
\({\bf{\nabla}} \cdot {\bf{F}} = 0,{\bf{\nabla}} \times {\bf{F}} = 0\)
②无旋有源场(点电荷)
\({\bf{\nabla}} \cdot {\bf{F}} \ne 0,{\bf{\nabla}} \times {\bf{F}} = 0\)
③有旋有源场(通常情况下的电场)
\({\bf{\nabla}} \cdot {\bf{F}} \ne 0,{\bf{\nabla}} \times {\bf{F}} \ne 0\)
④有旋无源场(载流导线内部磁场)
\({\bf{\nabla}} \cdot {\bf{F}} = 0,{\bf{\nabla}} \times {\bf{F}} \ne 0\)
图7 常见的几种场
(a)无旋无源场 (b)无旋有源场 (c)有旋有源场

常用的场变量

符号 中文 English 单位
\(\bf{A}\) 矢量磁位 Magnetic vector pontential Wb/m
\(\bf{B}\) 磁感应强度
磁通密度
Magnetic flux density Wb/㎡(T)
\(\bf{H}\) 磁场强度 Magnetic field intensity A/m
\(\bf{D}\) 电位移 Electric flux density C/㎡
\(\bf{E}\) 电场强度 Electric field intensity V/m
\(\bf{J}\) 电流密度 Electric current density A/㎡
\(\bf{F}\) 洛伦兹力 Lorentz force N
\(q\) 电荷 Charge C
\(\rho\) 体电荷密度 Electric charge density C/m³
\(\phi\) 电位 Electric potential V

矢量场唯一性定理

一个矢量场被它的散度、旋度和边界条件唯一性确定。
证明:设有两个矢量场\(F_1\)\(F_2\),在体积\(V\)及其边界表面\(S\)上有定义,且有以下关系成立。
\({\bf{\nabla}} \times {\bf{F_1}} = {\bf{\nabla}} \times {\bf{F_2}}\)(在\(V\)内)①
\({\bf{\nabla}} \cdot {\bf{F_1}} = {\bf{\nabla}} \cdot {\bf{F_2}}\)(在\(V\)内)②
\(F_{1n}=F_{2n}\)\(F_{1t}=F_{2t}\)(在\(S\)上)③
下标t和n分别表示矢量的切向和法向分量。
现证明\({\bf{F_1}}={\bf{F_2}}\),即两个矢量场是同一个场。
\({\bf{F}}={\bf{F_1}}-{\bf{F_2}}\),由①得\({\bf{\nabla}} \times {\bf{F}} = {\bf{\nabla}} \times {\bf{F_1}} - {\bf{\nabla}} \times {\bf{F_2}} = {\bf{0}}\)\(\bf{F}\)为无旋场)④
\(\bf{F}\)可表示成某一标量函数\(\varphi\)的梯度,即\(\bf{F}=\bf{\nabla}\varphi\)
注:这里使用了“梯度场无旋”这一性质,可以将无旋度的\(\bf{F}\)替换为一个标量函数的梯度。
利用第一格林公式\(\oint\limits_S {u\frac{dv}{dn}} dS = \int\limits_V {(u{ {\bf{\nabla}} ^2}v + {\bf{\nabla}} v \cdot {\bf{\nabla}} u)}dV\)
\(u=v=\varphi\)代入⑥,得\(\oint\limits_S {\varphi\frac{d\varphi}{dn}} dS = \int\limits_V {(\varphi{ {\bf{\nabla}} ^2}\varphi + {\bf{\nabla}} \varphi \cdot {\bf{\nabla}} \varphi)}dV\)
考虑到\({\bf{\nabla}}^2\varphi = {\bf{\nabla}} \cdot ({\bf{\nabla}}\varphi) = {\bf{\nabla}} \cdot {\bf{F}} = {\bf{\nabla}} \cdot {\bf{F_1}} - {\bf{\nabla}} \cdot {\bf{F_2}} = 0\)
因此⑦右边第一项为零
若边界条件为\(F_{1n}=F_{2n}\),则\(\frac{\partial \varphi}{\partial n}=F_{1n}-F_{2n}=0\)
因此⑦左边为零
若边界条件为\(F_{1t}=F_{2t}\),则\(({\bf{\nabla}}\varphi)_t=0\),即\(S\)面为\(\varphi\)的等量面,同时由于\(\varphi\)为调和函数,可以利用第三格林公式\(\oint\limits_S {\frac{\partial \varphi }{\partial n}ds = 0}\)
因此⑦的左边项\(\oint\limits_S {\varphi\frac{\partial \varphi }{\partial n}ds} = \varphi \oint\limits_S {\frac{\partial \varphi }{\partial n}ds} = 0\)
因此无论是哪一种边界条件,⑦的左边项均为零。因此\(\int\limits_V {({\bf{\nabla}} \varphi \cdot {\bf{\nabla}} \varphi)}dV = 0 \Rightarrow \int\limits_V { ({ {\bf{\nabla}}\varphi})^2}dV = 0\)
由于\(({ {\bf{\nabla}}\varphi})^2 \geqslant 0\),因此使⑫成立的唯一可能性为\({\bf{\nabla}}\varphi\)处处为零,即\({\bf{F}}={\bf{F_1}}-{\bf{F_2}}=0\)\({\bf{F_1}}={\bf{F_2}}\),证毕。

参考资料