线性系统理论02-线性系统的状态空间描述

文章目录
  1. 1. 状态和状态空间
  2. 2. 线性系统的状态空间描述
  3. 3. 系统按其状态空间描述的分类
  4. 4. 化输入—输出描述为状态空间描述
    1. 4.1. 结论1——由输入输出描述导出状态空间描述
    2. 4.2. 结论2——由输入输出描述导出状态空间描述
    3. 4.3. 结论3——由传递函数描述导出状态空间描述
    4. 4.4. 由方块图描述导出状态空间描述
  5. 5. 线性时不变系统的特征结构
  6. 6. 状态方程的对角线规范形和约当规范形
    1. 6.1. 对角线规范性
    2. 6.2. 约当规范形
  7. 7. 由状态空间描述导出传递函数矩阵
  8. 8. 线性系统的坐标变化
  9. 9. 组合系统的状态空间描述
    1. 9.1. 子系统并联
    2. 9.2. 子系统串联
    3. 9.3. 子系统的反馈
  10. 10. 参考资料

线性系统理论课程笔记
对应教材内容第二章 线性系统的状态空间描述的内容

状态和状态空间

状态是一个列向量,由各个状态变量构成。 \[X(t) = \left[ {\begin{array}{*{20}{c}} { {x_1}(t)} \\ \vdots \\ { {x_n}(t)} \end{array}} \right]t \geqslant {t_0}\] 状态空间是状态向量的集合,状态空间的维数等于状态的维数。

线性系统的状态空间描述

图1 动力学系统结构示意图

输入变量组:\({u_1},{u_2}, \cdots ,{u_p}\)(环境对系统的作用)
输出变量组:\({y_1},{y_2}, \cdots ,{y_q}\)(系统对环境的作用)
状态变量组:\({x_1},{x_2}, \cdots ,{x_n}\)(能完全表征其时间域行为的一个最小内部变量组,刻画系统在每个时刻所处状况的变量,体现了系统的行为)

系统的外部描述:又称作输入—输出描述。外部描述是不完全的描述,不表征系统的内部结构和内部变量,只反映外部变量间的因果关系,即输出和输入间的因果关系。
线性定常、单输入—单输出系统,外部描述为线性常系数微分方程。 \[{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + \cdots + {a_1}{y^{(1)}} + {a_0}y = {b_{n - 1}}{u^{(n - 1)}} + {b_{n - 2}}{u^{(n - 2)}} + \cdots + {b_1}{u^{(1)}} + {b_0}u\] 假定初始条件为零,取拉氏变换。得到其复频率域描述,即传递函数。 \[G(s) = \frac{ { {b_{n - 1}}{s^{n - 1}} + \cdots + {b_1}s + {b_0}}}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\]

系统的内部描述:这里指状态空间描述。内部描述是完全的描述,能够完全反映系统的所有动力学特性。内部描述需要由两个数学方程表征(状态方程和输出方程,统称为状态空间表达式)。
状态方程:微分方程或差分方程(状态变量组和输入变量组间的因果关系)。
一般的情况下,为一阶非线性时变微分方程组。 \[\left\{ {\begin{array}{*{20}{c}} { { {\dot x}_1} = {f_1}({x_1}, \cdots ,{x_n};{u_1}, \cdots ,{u_p},t)} \\ \cdots \\ { { {\dot x}_n} = {f_n}({x_1}, \cdots ,{x_n};{u_1}, \cdots ,{u_p},t)} \end{array}} \right.t \geqslant {t_0}\] 向量方程形式为\(\dot X = f(x,u,t),t \geqslant {t_0}\)

输出方程:代数方程(状态变量组、输入变量组和输出变量组间的转换关系)。
一般的情况下,输出方程为 \[\left\{ {\begin{array}{*{20}{c}}{ {y_1} = {g_1}({x_1}, \cdots ,{x_n};{u_1}, \cdots ,{u_p},t)} \\ \cdots \\ { {y_q} = {g_q}({x_1}, \cdots ,{x_n};{u_1}, \cdots ,{u_p},t)} \end{array}} \right.t \geqslant {t_0}\] 向量方程形式为\(Y = g(x,u,t),t \geqslant {t_0}\)

连续时间系统的线性系统状态空间描述为: \[\left\{ {\begin{array}{*{20}{c}}{\dot x = A(t)x + B(t)u} \\ {y = C(t)x + D(t)u} \end{array}} \right.t \geqslant {t_0}\]
图2 连续时间线性系统结构图
离散时间系统的线性系统状态空间描述为: \[\left\{ {\begin{array}{*{20}{c}}{x(k+1) = G(k)x(k) + H(k)u(k)} \\ {y(k) = C(k)x(k) + D(k)u(k)} \end{array}} \right.k=1,2,\cdots\]
图3 离散时间线性系统结构图
系统状态空间描述的列写举例(RLC电路网络):
图4 RLC电路网络结构图

选取电感电流\(i_L\)与电容电压\(u_C\)作为状态变量,列写回路方程: \[\left\{ {\begin{array}{*{20}{c}} {i_L=(u-L\frac{di_L}{dt})\frac{1}{R_1}}+C\frac{du_C}{dt} \\ {L\frac{di_L}{dt}+u_C+C\frac{du_C}{dt}R_2=u} \end{array}}\right.\] 整理得 \[\left\{ {\begin{array}{*{20}{c}} {\frac{di_L}{dt}=\frac{u}{L}-\frac{i_L}{L}(\frac{R_1R_2}{R_1+R_2})-\frac{u_C}{L}(\frac{R_1}{R_1+R_2})} \\ {\frac{du_C}{dt}=\frac{R_1}{C(R_1+R_2)}i_L-\frac{1}{C(R_1+R_2)}u_C} \end{array}}\right.\] 取状态变量\(x_1=i_L\)\(x_2=u_C\),进一步整理得到状态方程 \[\left\{ {\begin{array}{*{20}{c}} {\dot x_1=-\frac{1}{L}(\frac{R_1R_2}{R_1+R_2})x_1-\frac{1}{L}(\frac{R_1}{R_1+R_2})x_2+\frac{1}{L}u} \\ {\dot x_2=\frac{R_1}{C(R_1+R_2)}x_1-\frac{1}{C(R_1+R_2)}x_2} \end{array}}\right.\] 该状态方程可简化为\(\dot x = A(t)x + B(t)u\),其中\(A = \left[ {\begin{array}{*{20}{c}} -\frac{1}{L}(\frac{R_1R_2}{R_1+R_2})&-\frac{1}{L}(\frac{R_1}{R_1+R_2}) \\ \frac{R_1}{C(R_1+R_2)}&-\frac{1}{C(R_1+R_2)} \end{array}} \right]\)\(B=\left[ {\begin{array}{*{20}{c}} \frac{1}{L} \\ 0 \end{array}} \right]\)
选取\(u_{R2}\)作为输出变量\(y\),则有: \[u_{R2}=R_2 i_C=R_2 C\frac{dU_c}{dt}=\frac{R_1 R_2}{R_1+R_2}i_L-\frac{R_2}{R_1+R_2}u_C\] \[y=\frac{R_1 R_2}{R_1+R_2}x_1-\frac{R_2}{R_1+R_2}x_2\] 该输出方程可简化为\(y = C(t)x + D(t)u\),其中\(C=\left[ {\begin{array}{*{20}{c}} \frac{R_1 R_2}{R_1+R_2} & -\frac{R_2}{R_1+R_2} \end{array}} \right]\)\(D=[0]\)

系统按其状态空间描述的分类

  1. 线性系统和非线性系统
  2. 时变系统和时不变系统
  3. 连续时间系统和离散时间系统
  4. 确定性系统和不确定性系统

化输入—输出描述为状态空间描述

结论1——由输入输出描述导出状态空间描述

给定单输入,单输出线性时不变系统的输入输出描述: \[{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + \cdots + {a_1}{y^{(1)}} + {a_0}y = {b_m}{u^{(m)}} + {b_{m - 1}}{u^{(m - 1)}} + \cdots + {b_1}{u^{(1)}} + {b_0}u\] \[G(s) = \frac{Y(s)}{U(s)} = \frac{ { {b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}{s^1} + {b_0}}}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\] \(m < n\)时,有 \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}}0&1&0& \cdots &0 \\ \vdots &{}& \ddots &{}& \vdots \\ 0&{}&{}& \ddots &0 \\ 0&0&0& \cdots &1 \\ { - {a_0}}&{ - {a_1}}&{ - {a_2}}& \cdots &{ - {a_{n - 1}}} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}}{b_0}&{b_1}& \cdots &{b_m}&0& \cdots &0 \end{array}} \right]x \hfill \\ \end{gathered}\] 【例1】:\({y^{(3)}} + 16{y^{(2)}} + 194{y^{(1)}} + 640y = 160{u^{(1)}} + 720u\) \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 0&0&1 \\ { - 640}&{ - 194}&{ - 16} \end{array}} \right] x + \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}} {720}&{160}&0 \end{array}} \right] x \hfill \\ \end{gathered}\] \(m = n\)时,有 \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}}0&1&0& \cdots &0 \\ \vdots &{}& \ddots &{}& \vdots \\ 0&{}&{}& \ddots &0 \\ 0&0&0& \cdots &1 \\ { - {a_0}}&{ - {a_1}}&{ - {a_2}}& \cdots &{ - {a_{n - 1}}} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}} {({b_0} - {b_n}{a_0}),}&{({b_1} - {b_n}{a_1}),}&{ \cdots ,}&{({b_{n - 1}} - {b_n}{a_{n- 1}})} \end{array}} \right]x + {b_n}u \hfill \\ \end{gathered}\] 【例2】:\({y^{(3)}} + 16{y^{(2)}} + 194{y^{(1)}} + 640y = 4{u^{(3)}} + 160{u^{(1)}} + 720u\)
\(b_0 - b_3 a_0 = 720 - 4 \times 640 = -1840\)
\(b_1 - b_3 a_1 = 160 - 4 \times 194 = -616\)
\(b_0 - b_3 a_0 = 0 - 4 \times 16 = -64\) \[\begin{gathered} \dot x = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 0&0&1 \\ { - 640}&{ - 194}&{ - 16} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}}{-1840}&{-616}&{-64} \end{array}} \right]x + 4u \hfill \\ \end{gathered}\]

结论2——由输入输出描述导出状态空间描述

给定单输入,单输出线性时不变系统的输入输出描述:
\(m = 0\)时,输入输出描述为: \[{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + \cdots + {a_1}{y^{(1)}} + {a_0}y = {b_0}u\] \[G(s) = \frac{b_0}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\] 其对应的状态空间描述为: \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}} 0&1&0& \cdots &0 \\ \vdots &{}& \ddots &{}& \vdots \\ 0&{}&{}& \ddots &0 \\ 0&0&0& \cdots &1 \\ { - {a_0}}&{ - {a_1}}&{ - {a_2}}& \cdots &{ - {a_{n - 1}}} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}0 \\ 0 \\ \vdots \\ 0 \\ {b_0} \end{array}} \right]u \hfill \\ y = \left[ {\begin{array}{*{20}{c}}{1,}&{0,}&{ \cdots ,}&0 \end{array}} \right]x \hfill \\ \end{gathered}\] \(m \ne 0\)时,输入输出描述为: \[{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + \cdots + {a_1}{y^{(1)}} + {a_0}y = {b_n}{u^{(n)}} + {b_{n - 1}}{u^{(n - 1)}} + \cdots + {b_1}{u^{(1)}} + {b_0}u\] \[G(s) = \frac{ { {b_n}{s^n} + {b_{n - 1}}{s^{n - 1}} + \cdots + {b_1}{s^1} + {b_0}}}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\] 其对应的状态空间描述为: \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}}0&1&0& \cdots &0 \\ \vdots &{}& \ddots &{}& \vdots \\ 0&{}&{}& \ddots &0 \\ 0&0&0& \cdots &1 \\ { - {a_0}}&{ - {a_1}}&{ - {a_2}}& \cdots &{ - {a_{n - 1}}}\end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}{\beta _1} \\ {\beta _2} \\ \vdots \\ {\beta _{n - 1}} \\ {\beta _n} \end{array}} \right]u \hfill \\ \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}y = \left[ {\begin{array}{*{20}{c}}{1,}&{0,}&{ \cdots ,}&0 \end{array}} \right]x + b_n u \hfill \\ \end{gathered}\] 其中\({\beta _0} = {b_n}\)
\({\beta _1} = {b_{n - 1}} - {a_{n - 1}}{\beta _0}\)
\({\beta _2} = {b_{n - 2}} - {a_{n - 1}}{\beta _1} - {a_{n - 2}}{\beta _0}\)
\(\vdots\)
\({\beta _n} = {b_0} - {a_{n - 1}}{\beta _{n - 1}} - {a_{n - 2}}{\beta _{n - 2}} - \cdots - {a_1}{\beta _1} - {a_0}{\beta _0}\)
【例3】:\({y^{(3)}} + 16{y^{(2)}} + 194{y^{(1)}} + 640y = 160{u^{(1)}} + 720u\)
\({\beta _0} = {b_3} = 0\)
\({\beta _1} = {b_2} - {a_2}{\beta _0} = 0-16 \times 0=0\)
\({\beta _2} = {b_1} - {a_2}{\beta _1} - {a_1}{\beta _0}=160-16 \times 0-194 \times 0=160\)
\({\beta _3} = {b_0} - {a_2}{\beta _2} - {a_1}{\beta _1} - {a_0}{\beta _0}=720-16 \times 160-194 \times 0-640 \times 0=-1840\)
\[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 0&0&1 \\ { - 640}&{ - 194}&{ - 16} \end{array}} \right] x + \left[ {\begin{array}{*{20}{c}} 0 \\ 160 \\ -1840 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}} 1&0&0 \end{array}} \right] x \hfill \\ \end{gathered}\] 注:与例1相比,相同的输入输出描述得到的状态空间描述不同,说明同一个输入输出描述可以对应多个状态空间描述。

结论3——由传递函数描述导出状态空间描述

给定单输入、单输出线性时不变系统的传递函数描述为: \[G(s) = \frac{ { {b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}{s^1} + {b_0}}}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\] 当分母方程的根\({\lambda_1},{\lambda_2},\cdots,{\lambda_n}\)两两相异
\(m < n\)时,有
\(\begin{gathered}G(s) = \frac{k_1}{s - {\lambda_1}} + \frac{k_2}{s - {\lambda_2}} + \cdots + \frac{k_n}{s - {\lambda_n}} \hfill \\{k_i} = \mathop {\lim }\limits_{s \to \infty } G(s)(s - {\lambda_i}),\begin{array}{*{20}{c}}{}&{} \end{array}i = 1,2, \cdots ,n \hfill \\ \end{gathered}\)
对应的状态空间描述为: \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}}{\lambda _1}&{}&{}&{} \\ {}&{\lambda _2}&{}&{} \\ {}&{}& \ddots &{} \\ {}&{}&{}&{\lambda _n} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}{k_1} \\ {k_2} \\ \vdots \\ {k_n} \end{array}} \right]u \hfill \\y = \left[ {\begin{array}{*{20}{c}}{1,}&{1,}&{ \cdots ,}&1 \end{array}} \right]x \hfill \\ \end{gathered}\] \(m = n\)时,有
\(\begin{gathered}G(s) = \frac{ { {b_n}{s^n} + {b_{n - 1}}{s^{n - 1}} + \cdots + {b_1}s + {b_0}}}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}} = {b_n} + \bar G(s) \hfill \\ \bar G(s) = \frac{ {\left( { {b_{n - 1}} - {b_n}{a_{n - 1}}} \right){s^{n - 1}} + \cdots + \left( { {b_0} - {b_n}{a_0}} \right)}}{ { {s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}} \hfill \\{ {\bar k}_i} = \mathop {\lim }\limits_{s \to {\lambda _i}} \bar G(s)(s - {\lambda_i}),\begin{array}{*{20}{c}}{}&{} \end{array}i = 1,2, \cdots ,n \hfill \\ \end{gathered}\)
对应的状态空间描述为: \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}}{\lambda_1}&{}&{}&{} \\ {}&{\lambda_2}&{}&{} \\ {}&{}& \ddots &{} \\ {}&{}&{}&{\lambda_n} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}{ {\bar k}_1} \\ { {\bar k}_2} \\ \vdots \\ { {\bar k}_n} \end{array}} \right]u \hfill \\y = \left[ {\begin{array}{*{20}{c}}{1,}&{1,}&{\cdots ,}&1 \end{array}} \right]x + {b_n}u \hfill \\\end{gathered}\] 【例4】:\(G(s)=\frac{7s^2+2s+1}{s^3+6s^2+11s+6}\)
\(D(s)=s^3+6s^2+11s+6=(s+1)(s+2)(s+3)\)
\(k_1=\mathop {\lim }\limits_{s \to -1 } \frac{7s^2+2s+1}{(s+2)(s+3)}\),同理\(k_2=-25\)\(k_3=29\)。 对应的状态空间描述为: \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}} -1&0&0 \\ 0&-2&0 \\ 0&0&-3 \end{array}} \right] x + \left[ {\begin{array}{*{20}{c}} 3 \\ -25 \\ 29 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}} 1&1&1 \end{array}} \right] x \hfill \\ \end{gathered}\]

由方块图描述导出状态空间描述

【例5】
图5 系统方块图
\(\frac{7s+13}{s^2+5s+4}=\frac{2}{s+1}+\frac{5}{s+4}\),该方块图可等效为:
图6 等效方块图

可以得到变量间的关系:
\(\left\{ \begin{gathered}x_1 = \frac{5}{s+4}(u-x_3) \hfill \\x_2 = \frac{2}{s+1}(u-x_3) \hfill \\x_3 = \frac{1}{s+2}(x_1+x_2) \hfill \\y = x_1 + x_2 \hfill \\ \end{gathered} \right. \Rightarrow \left\{ \begin{gathered}{ {\dot x}_1} = - 4{x_1} + 5(u - {x_3}) \hfill \\{ {\dot x}_2} = - {x_2} + 2(u - {x_3}) \hfill \\{ {\dot x}_3} = - 2{x_3} + y \hfill \\y = {x_1} + {x_2} \hfill \\ \end{gathered} \right.\)
得到状态空间描述为: \[\begin{gathered}{\dot x} = \left[ {\begin{array}{*{20}{c}}{ - 4}&0&{ - 5} \\ 0&{ - 1}&{ - 2} \\ 1&1&{ - 2} \end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}5 \\ 2 \\ 0 \end{array}} \right]u \hfill \\ y = \left[ {\begin{array}{*{20}{c}} 1&1&0 \end{array}} \right]x \hfill \\ \end{gathered}\] 注:这里有\(sx_1={\dot x_1}\)\(sx_2={\dot x_2}\)\(sx_3={\dot x_3}\)

线性时不变系统的特征结构

对于连续线性时不变系统\(\dot x = Ax + Bu\),其特征矩阵定义为\((sI-A)\)
特征多项式\(\alpha (s) = \det (sI - A) = {s^n} + {\alpha _{n - 1}}{s^{n - 1}} + \cdots + {\alpha _1}s + {\alpha _0}\)
Caley-Hamilton定理:\(\alpha (A) = {A^n} + {\alpha _{n - 1}}{A^{n - 1}} + \cdots + {\alpha _1}A + {\alpha _0}I = 0\)
矩阵的迹:\(trH=(h_{11}+h_{22}+\cdots+h_{nn})=\sum\limits_{i=1}^n{h_{ii}}\)
基于迹计算的特征多项式的迭代算法: \[\begin{array}{*{20}{c}} { {R_{n - 1}} = I}&{ {\alpha _{n - 1}} = - \frac{ {tr{R_{n - 1}}A}}{1}} \\ { {R_{n - 2}} = {R_{n - 1}}A+{\alpha _{n - 1}}I}&{ {\alpha _{n - 2}} = - \frac{ {tr{R_{n - 2}}A}}{2}} \\ { {R_{n - 3}} = {R_{n - 2}}A+{\alpha _{n - 2}}I}&{ {\alpha _{n - 3}} = - \frac{ {tr{R_{n - 3}}A}}{3}} \\ {\vdots}&{\vdots} \\ { {R_1} = {R_2}A+{\alpha _2}I}&{ {\alpha _1} = - \frac{ {tr{R_1}A}}{n-1}} \\ { {R_0} = {R_1}A+{\alpha _1}I}&{ {\alpha _0} = - \frac{ {tr{R_0}A}}{n}} \end{array}\]

特征值:特征方程\(\alpha (s) = \det (sI - A) = {s^n} + {\alpha_{n - 1}}{s^{n - 1}} + \cdots + {\alpha_1}s + {\alpha_0} = 0\)的根。
特征向量:设\(\lambda_i\)为系统矩阵A的特征值,则右特征向量为满足\({\lambda_i}{v_i} = A{v_i}\)\(n\times 1\)非零向量\(v_i\),则左特征向量为满足\(\bar v_i^T{\lambda_i} = \bar v_i^TA\)\(1\times n\)非零向量\(\bar v_i^T\)
【例6】\(A=\left[ {\begin{array}{*{20}{c}} -2&0&1&1 \\ 1&-1&1&2 \\ 1&2&-1&2 \\ 1&1&1&2 \end{array}} \right]\) \[\begin{array}{*{20}{c}} {R_3=I=\left[ {\begin{array}{*{20}{c}} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{array}} \right]}&{R_3 A=R_3=\left[ {\begin{array}{*{20}{c}} -2&0&1&1 \\ 1&-1&1&2 \\ 1&2&-1&2 \\ 1&1&1&2 \end{array}} \right]}&{\alpha_3=-\frac{trR_3 A}{1}}=2 \\ {R_2=R_3 A+\alpha_3 I=\left[ {\begin{array}{*{20}{c}} 0&0&1&1 \\ 1&1&1&2 \\ 1&2&1&1 \\ 1&1&1&4 \end{array}} \right]}&{R_2 A=\left[ {\begin{array}{*{20}{c}} 2&3&0&3 \\ 2&3&3&8 \\ 2&1&3&8 \\ 4&5&5&12 \end{array}} \right]}&{\alpha_2=-\frac{trR_2 A}{2}=-10} \\ {R_1=R_2 A+\alpha_2 I=\left[ {\begin{array}{*{20}{c}} -8&3&0&3 \\ 2&-7&3&8 \\ 2&1&-7&8 \\ 4&5&5&2 \end{array}} \right]}&{R_1 A=\left[ {\begin{array}{*{20}{c}} 22&0&-2&4 \\ 0&21&0&7 \\ -2&-7&18&13 \\ 4&7&6&23 \end{array}} \right]}&{\alpha_1=-\frac{trR_1 A}{3}=-28} \\ {R_0=R_1 A+\alpha_1 I=\left[ {\begin{array}{*{20}{c}} -6&0&-2&4 \\ 0&-7&0&7 \\ -2&-7&-10&13 \\ 4&7&6&-5 \end{array}} \right]}&{R_0 A=\left[ {\begin{array}{*{20}{c}} 14&0&0&0 \\ 0&14&0&0 \\ 0&0&14&0 \\ 0&0&0&14 \end{array}} \right]}&{\alpha_0=-\frac{trR_0 A}{4}=-14} \end{array}\] \(\alpha (s)= s^4+2s^3-10s^2-28s-14\)

状态方程的对角线规范形和约当规范形

对角线规范性

对于连续线性时不变系统\(\dot x = Ax + Bu\),其特征值\({\lambda_1},{\lambda_2},\cdots,{\lambda_n}\)两两相异,构造变换阵\(P=[v_1,v_2,\cdots,v_n]\),则状态方程可通过线性非奇异变换\(\bar X = {P^{ - 1}}X\)化为对角线规范性。 \[\dot {\bar X} = \left[ {\begin{array}{*{20}{c}} {\lambda _1}&{}&{}&{} \\ {}&{\lambda _2}&{}&{} \\ {}&{}& \ddots &{} \\ {}&{}&{}&{\lambda _n} \end{array}} \right]\bar X + \bar Bu\] 其中\(\bar X = {P^{ - 1}}X\)\(\bar B = {P^{ - 1}}B\)
【例7】\(\dot X = \left[ {\begin{array}{*{20}{c}}2&{-1}&{-1} \\ 0&{-1}&0 \\ 0&2&1 \end{array}} \right]X + \left[ {\begin{array}{*{20}{c}} 7 \\ 2 \\ 3 \end{array}} \right]u\)
\(|\lambda I-A|=0\)\((\lambda-2)(\lambda+1)(\lambda-1)=0\),特征值为\(\lambda_1 = 2,\lambda _2 = -1,\lambda _3 = 1\)
由等式\(\lambda_i v_i=Av_i\),解方程组\(|\lambda_i I-A|v_i=0\),得到特征向量
\[{\begin{array}{*{20}{c}} {v_1=\left[ {\begin{array}{*{20}{c}} 1\\0\\0 \end{array}}\right]}&{v_2=\left[ {\begin{array}{*{20}{c}} 1\\0\\1 \end{array}}\right]}&{v_3=\left[ {\begin{array}{*{20}{c}} 0\\1\\-1 \end{array}}\right]} \end{array}}\] 得到\(P =[v_1,v_2,v_3] = \left[ {\begin{array}{*{20}{c}}1&1&0 \\ 0&0&1 \\ 0&1&-1\end{array}} \right]\),求其逆矩阵\(P^{-1} = \left[ {\begin{array}{*{20}{c}}1&-1&-1 \\ 0&1&1 \\ 0&1&0 \end{array}} \right]\)
\(\bar A = P^{-1}AP = \left[ {\begin{array}{*{20}{c}}2&0&0 \\ 0&-1&0 \\ 0&0&1 \end{array}} \right]\)\(\bar B=P^{-1}B = \left[ {\begin{array}{*{20}{c}}2\\5\\2\end{array}} \right]\)
\(\dot{\bar X} = \left[ {\begin{array}{*{20}{c}}2&0&0 \\ 0&-1&0 \\ 0&0&1 \end{array}} \right]\bar X + \left[ {\begin{array}{*{20}{c}}2\\5\\2 \end{array}} \right]u\)

约当规范形

系统的特征值为并非两两相异时,状态方程可变换为约当规范形。
设系统特征值\({\lambda_1},{\lambda_2},\cdots,{\lambda_l}\)分别为\({\sigma_1},{\sigma_2},\cdots,{\sigma_l}\)重特征值,则状态方程可通过变换\(\bar X = {Q^{ - 1}}X\)\(Q\)为可逆矩阵)化为约当规范型: \[\dot {\bar X}=\left[ {\begin{array}{*{20}{c}}{J_1}&{}&{} \\ {}& \ddots &{} \\ {}&{}&{J_l} \end{array}} \right]\bar X + \bar Bu\] 其中\(\bar X = {Q^{ - 1}}X\)\(\bar B = {Q^{ - 1}}B\)\(J_1,\cdots,J_l\)为对应特征值\({\lambda_1},\cdots,{\lambda_l}\)的约当块,其形式为: \[{J_{i}} = \left[ {\begin{array}{*{20}{c}}{\lambda_i}&1&{}&{} \\ {}& \ddots & \ddots &{} \\ {}&{}& \ddots &1 \\ {}&{}&{}& \end{array}} \right]\] 约当块的行数(列数)与所对应特征值的重数相等。在约当规范形中,每一个状态变量的方程和下一序号的状态变量构成耦合。
【例8】求\(A=\left[{\begin{array}{*{20}{c}}0&1&0\\0&0&1\\2&3&0\end{array}}\right]\) 的约当阵。
\(|\lambda I-A|=0\)\(\lambda^3-3\lambda-2=0\),特征值为\(\lambda_1 = \lambda_2 = -1,\lambda_3 = 2\)
对于\(\lambda_1=-1\),有\(\lambda_1 Q_1 - AQ_1 = 0\),解得\(Q_1=\left[{\begin{array}{*{20}{c}}1\\-1\\1\end{array}}\right]\)
对于\(\lambda_2=-1\),有\(\lambda_2 Q_2 - AQ_2 = -Q_1\),解得\(Q_2=\left[{\begin{array}{*{20}{c}}1\\0\\1\end{array}}\right]\)
对于\(\lambda_3=2\),有\(\lambda_3 Q_3 - AQ_3 = 0\),解得\(Q_3=\left[{\begin{array}{*{20}{c}}1\\2\\4\end{array}}\right]\)
得到\(Q =[Q_1,Q_2,Q_3] = \left[ {\begin{array}{*{20}{c}}1&1&1 \\ -1&0&2 \\ 1&1&4\end{array}} \right]\),求其逆矩阵\(P^{-1} = \frac{1}{3}\left[ {\begin{array}{*{20}{c}}-2&-3&2 \\ 6&3&-3 \\ -1&0&1 \end{array}} \right]\)
得到约当阵\(\bar A = P^{-1}AP = \left[ {\begin{array}{*{20}{c}}-1&1&0 \\ 0&-1&0 \\ 0&0&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} J_1&0 \\ 0&J_2 \end{array}} \right]\)
其中\(J_1=\left[ {\begin{array}{*{20}{c}} -1&1 \\ 0&-1 \end{array}} \right]\)\(J_2=[2]\)

由状态空间描述导出传递函数矩阵

对于连续时间线性时不变系统\(\dot x = Ax + Bu\)\(y = Cx + Du\)
其传递函数矩阵\(G(s) = C{(sI - A)^{ - 1}}B + D\)
【例9】 \[\begin{gathered}\dot x = \left[ {\begin{array}{*{20}{c}} -1&0 \\ 0&1 \end{array}} \right] x + \left[ {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right]u \hfill \\ \hfill \\ y = \left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right] x \hfill \\ \end{gathered}\] \(sI-A=\left[ {\begin{array}{*{20}{c}} s+1&0 \\ 0&s-1 \end{array}} \right]\)
\((sI-A)^{-1}=\left[ {\begin{array}{*{20}{c}} \frac{1}{s+1}&0 \\ 0&\frac{1}{s-1} \end{array}} \right]\)
\(G(s)=\frac{Y(s)}{R(s)}=C{(sI-A)^{-1}}B+D=\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right] \left[ {\begin{array}{*{20}{c}} \frac{1}{s+1}&0 \\ 0&\frac{1}{s-1} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right]=\frac{1}{s+1}\)

对于多输入多输出系统,计算特征多项式\(\alpha (s) \equiv \det (sI - A) = {s^n} + {\alpha _{n - 1}}{s^{n - 1}} + \cdots + {\alpha _1}s + {\alpha _0}\)
\[\left\{ {\begin{array}{*{20}{l}} {E_{n - 1} = CB} \\ {E_{n - 2} = CAB + {\alpha _{n - 1}}CB} \\ { \cdots \cdots } \\ {E_1} = C{A^{n - 2}B + {\alpha _{n - 1}}C{A^{n - 3}}B + \cdots + {\alpha _2}CB} \\ {E_0} = C{A^{n - 1}B + {\alpha _{n - 1}}C{A^{n - 2}}B + \cdots + {\alpha _1}CB} \end{array}} \right.\] 则有\(G(s) = \frac{1}{\alpha (s)}[{E_{n - 1}}{s^{n - 1}} + {E_{n - 2}}{s^{n - 2}} + \cdots + {E_1}s + {E_0}] + D\)
【例10】 \[\begin{gathered}\dot X = \left[ {\begin{array}{*{20}{c}}2&0&0 \\ 0&2&0 \\ 0&3&1 \end{array}} \right]X + \left[ {\begin{array}{*{20}{c}}1&2 \\ 1&0 \\ 3&1 \end{array}} \right]u \hfill \\y = \left[ {\begin{array}{*{20}{c}}1&1&2 \end{array}} \right]X \hfill \\ \end{gathered}\] 特征多项式\(\alpha (s) = \det (sI - A) = {(s - 2)^2}(s - 1) = {s^3} - 5{s^2} + 8s - 4\)
\(\alpha_2=-5,\alpha_1=8\)
\({E_2} = CB = \left[ {\begin{array}{*{20}{c}} 1&1&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&2 \\ 1&0 \\ 3&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}8&4 \end{array}} \right]\)
\({E_1} = CAB + {\alpha _2}CB = \left[ {\begin{array}{*{20}{c}}1&1&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}2&0&0 \\ 0&2&0 \\ 0&3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&2 \\ 1&0 \\ 3&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 40}&{ - 20} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 24}&{ - 14} \end{array}} \right]\)
\({E_0} = C{A^2}B + {\alpha _2}CAB + {\alpha _1}CB = \left[ {\begin{array}{*{20}{c}}1&1&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}2&0&0 \\ 0&2&0 \\ 0&3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}2&4 \\ 2&0 \\ 6&1 \end{array}} \right]\)
\(+\left[ {\begin{array}{*{20}{c}}{ - 80}&{ - 30} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{64}&{32} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{16}&{12} \end{array}} \right]\)
\(G(s) = \frac{1}{\alpha (s)}[{E_2}{s^2} + {E_1}s + {E_0}]=\left[ {\begin{array}{*{20}{c}}{\frac{8{s^2} - 24s + 16}{s^3 - 5s^2 + 8s-4}}&{\frac{4{s^2} - 14s + 12}{s^3 - 5s^2 + 8s - 4}} \end{array}}\right]\)

线性系统的坐标变化

注:自学内容,仅供参考。
设状态在基底\(\{e_1,e_2,\cdots,e_n\}\)上的表征为\(X=[x_1,x_2,\cdots,x_n]^T\)
而在另一个基底\(\{ {\bar e_1},{\bar e_2},\cdots,{\bar e_n}\}\)上的表征为\(X=[{\bar x_1},{\bar x_2},\cdots,{\bar x_n}]^T\)
\(n\)维状态空间中有且仅有\(n\)个线性无关的向量,而\(\{e_1,e_2,\cdots,e_n\}\)必是线性无关的,因此\(\{e_1,e_2,\cdots,e_n\}\)可表示为\(\{ {\bar e_1},{\bar e_2},\cdots,{\bar e_n}\}\)的线性组合,且表示法唯一。

结论1:给定线性定常系统的状态空间描述为\(\dot X = AX + Bu\)\(y = CX + Du\)
引入变换\({\bar X}=PX\)(\(detP \ne 0\))得到\(\dot {\bar X} = {\bar A}{\bar X} + {\bar B}u\)\(y = {\bar C}{\bar X} + {\bar D}u\)
则有\(\bar A = PA{P^{-1}},\bar B = PB,\bar C = C{P^{-1}},\bar D = D\)

结论2:变换前后特征值不变。即\({\lambda _i}(A)={\lambda _i}(\bar A),i=1,2,\cdots,n\)
两个状态空间描述存在变换关系,称为代数等价。
同一系统采用不同的状态变量组,所导出的两个状态空间描述,必然是代数等价的。
两个代数等价的状态空间描述,可化为相同的对角线规范形或约当规范形。

结论:线性定常系统的传递函数矩阵在坐标变换下保持不变。
物理含义:当系统的输入和输出变量确定后,不管如何选取状态变量组,系统的输出—输入特性将总是一样的。

组合系统的状态空间描述

子系统并联

图7 子系统并联

子系统并联的条件:\(dim(u_1)=dim(u_2),dim(y_1)=dim(y_2)\)
其中dim表示向量的维数。

并联后:\(u_1=u_2=u,y_1+y_2=y\)
\(\dot x_1=A_1 x_1+B_1 u_1\)
\(\dot x_2=A_2 x_2+B_2 u_2\)
\(y=y_1+y_2=C_1 x_1+C_2 x_2+D_1 u_1+D_2 u_2\) \[\left[ {\begin{array}{*{20}{c}}\dot x_1 \\ \dot x_2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A_1&0 \\ 0&A_2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x_1 \\ x_2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} B_1 \\ B_2 \end{array}} \right]u\] \[y = \left[ {\begin{array}{*{20}{c}}C_1&C_2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x_1 \\ x_2 \end{array}} \right] + (D_1+D_2)u\]

子系统串联

图8 子系统串联

子系统串联的条件:\(dim(y_1)=dim(u_2)\)
串联后:\(u = u_1, u_2 = y_1, y_2 = u\)
\(\dot x_1=A_1 x_1+B_1 u\)
\(\dot x_2=A_2 x_2+B_2 u_2\)
\(y_1=C_1 x_1+D_1 u\)
\(y_1=u_2\)
\(y_2=C_2 x_2+D_2 u_2\)
\(y_2=y\)
由②③④知\(\dot x_2 = A_2 x_2 + B_2 C_1 x_1 + B_2 D_1 u\)
由③④⑤⑥知\(y = C_2 x_2 + D_2 C_1 x_1 + D_2 D_1 u\) \[\left[ {\begin{array}{*{20}{c}}\dot x_1 \\ \dot x_2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}A_1&0 \\ B_2 C_1&A_2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x_1 \\ x_2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}}B_1 \\ B_2 D_1 \end{array}} \right]u\] \[y = \left[ {\begin{array}{*{20}{c}}D_2 C_1&C_2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x_1 \\ x_2 \end{array}} \right] + (D_1 D_2)u\]

子系统的反馈

图9 子系统的反馈

子系统的反馈的条件:\(dim(u_1)=dim(y_2),dim(u_2)=dim(y_1)\)
这里取\(D_i=0\)的情况
反馈后:\(u_1=u-y_2,y_1=y=u_2\)
\(\dot x_1=A_1 x_1+B_1 u_1\)
\(y_1=C_1 x_1\)
\(\dot x_2=A_2 x_2+B_2 u_2\)
\(y_2=C_2 x_2\)
由①②⑤知\(\dot x_1 = A_1 x_1 + B_1 u - B_1 C_2 x_2\)
由①③④知\(\dot x _2 = A_2 x_2 + B_2 C_1 x_1\) \[\left[ {\begin{array}{*{20}{c}}\dot x_1 \\ \dot x_2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}A_1& -B_1 C_2 \\ B_2 C_1&A_2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x_1 \\ x_2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}}B_1 \\ 0 \end{array}} \right]u\] \[y = \left[ {\begin{array}{*{20}{c}}C_1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x_1 \\ x_2 \end{array}} \right]\]

参考资料